Aeschbacher T, Schmidt E, Blatter M, Maris C, Duss O, Allain FH, Güntert P, Schubert M (2013) Automated and assisted RNA resonance assignment using NMR chemical shift statistics. Nucleic Acids Res 41:e172. https://doi.org/10.1093/nar/gkt665
Article
Google Scholar
Antao VP, Tinoco I Jr (1992) Thermodynamic parameters for loop formation in RNA and DNA hairpin tetraloops. Nucleic Acids Res 20:819–824. https://doi.org/10.1093/nar/20.4.819
Article
Google Scholar
Bahrami A, Clos LJ 2nd, Markley JL, Butcher SE, Eghbalnia HR (2012) RNA-PAIRS: RNA probabilistic assignment of imino resonance shifts. J Biomol NMR 52:289–302. https://doi.org/10.1007/s10858-012-9603-z
Article
Google Scholar
Barton S, Heng X, Johnson BA, Summers MF (2013) Database proton NMR chemical shifts for RNA signal assignment and validation. J Biomol NMR 55:33–46. https://doi.org/10.1007/s10858-012-9683-9
Article
Google Scholar
Bax A, Davis DG (1985) MLEV-17-based two-dimensional homonuclear magnetization transfer spectroscopy. J Magn Reson 65:355–360. https://doi.org/10.1016/0022-2364(85)90018-6
ADS
Article
Google Scholar
Bax A, Griffey RH, Hawking BL (1983) Correlation of proton and nitrogen-15 chemical shifts by multiple quantum NMR. J Magn Reson 55:301–315. https://doi.org/10.1016/0022-2364(83)90241-X
ADS
Article
Google Scholar
Berman HM, Bhat TN, Bourne PE, Feng Z, Gilliland G, Weissig H, Westbrook J (2000a) The Protein Data Bank and the challenge of structural genomics. Nat Struct Biol 7(Suppl):957–959. https://doi.org/10.1038/80734
Article
Google Scholar
Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000b) The Protein Data Bank. Nucleic Acids Res 28:235–242. https://doi.org/10.1093/nar/28.1.235
Article
Google Scholar
Brown JD, Summers MF, Johnson BA (2015) Prediction of hydrogen and carbon chemical shifts from RNA using database mining and support vector regression. J Biomol NMR 63:39–52. https://doi.org/10.1007/s10858-015-9961-4
Article
Google Scholar
Brown JD, Kharytonchyk S, Chaudry I, Iyer AS, Carter H, Becker G, Desai Y, Glang L, Choi SH, Singh K, Lopresti MW, Orellana M, Rodriguez T, Oboh U, Hijji J, Ghinger FG, Stewart K, Francis D, Edwards B, Chen P, Case DA, Telesnitsky A, Summers MF (2020) Structural basis for transcriptional start site control of HIV-1 RNA fate. Science 368:413–417. https://doi.org/10.1126/science.aaz7959
ADS
Article
Google Scholar
Burnett JC, Rossi JJ (2012) RNA-based therapeutics: current progress and future prospects. Chem Biol 19:60–71. https://doi.org/10.1016/j.chembiol.2011.12.008
Article
Google Scholar
Corbett KS, Edwards DK, Leist SR, Abiona OM, Boyoglu-Barnum S, Gillespie RA, Himansu S, Schäfer A, Ziwawo CT, DiPiazza AT, Dinnon KH, Elbashir SM, Shaw CA, Woods A, Fritch EJ, Martinez DR, Bock KW, Minai M, Nagata BM, Hutchinson GB, Wu K, Henry C, Bahl K, Garcia-Dominguez D, Ma L, Renzi I, Kong W-P, Schmidt SD, Wang L, Zhang Y, Phung E, Chang LA, Loomis RJ, Altaras NE, Narayanan E, Metkar M, Presnyak V, Liu C, Louder MK, Shi W, Leung K, Yang ES, West A, Gully KL, Stevens LJ, Wang N, Wrapp D, Doria-Rose NA, Stewart-Jones G, Bennett H, Alvarado GS, Nason MC, Ruckwardt TJ, McLellan JS, Denison MR, Chappell JD, Moore IN, Morabito KM, Mascola JR, Baric RS, Carfi A, Graham BS (2020) SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness. Nature 586:567–571. https://doi.org/10.1038/s41586-020-2622-0
ADS
Article
Google Scholar
Cornilescu G, Didychuk AL, Rodgers ML, Michael LA, Burke JE, Montemayor EJ, Hoskins AA, Butcher SE (2016) Structural analysis of multi-helical RNAs by NMR-SAXS/WAXS: application to the U4/U6 di-snRNA. J Mol Biol 428:777–789. https://doi.org/10.1016/j.jmb.2015.11.026
Article
Google Scholar
Cunningham PR, Ofengand J (1990) Use of inorganic pyrophosphatase to improve the yield of in vitro transcription reactions catalyzed by T7 RNA polymerase. Biotechniques 9:713–714
Google Scholar
Dale T, Smith R, Serra MJ (2000) A test of the model to predict unusually stable RNA hairpin loop stability. RNA 6:608–615. https://doi.org/10.1017/s1355838200992495
Article
Google Scholar
Damase TR, Sukhovershin R, Boada C, Taraballi F, Pettigrew RI, Cooke JP (2021) The Limitless Future of RNA Therapeutics. Front Bioeng Biotechnol 9:628137. https://doi.org/10.3389/fbioe.2021.628137
Article
Google Scholar
Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293. https://doi.org/10.1007/BF00197809
Article
Google Scholar
D’Souza V, Dey A, Habib D, Summers MF (2004) NMR structure of the 101-nucleotide core encapsidation signal of the Moloney murine leukemia virus. J Mol Biol 337:427–442. https://doi.org/10.1016/j.jmb.2004.01.037
Article
Google Scholar
Ebrahimi M, Rossi P, Rogers C, Harbison GS (2001) Dependence of 13C NMR chemical shifts on conformations of RNA nucleosides and nucleotides. J Magn Reson 150:1–9. https://doi.org/10.1006/jmre.2001.2314
ADS
Article
Google Scholar
Farés C, Amata I, Carlomagno T (2007) 13C-detection in RNA bases: revealing structure-chemical shift relationships. J Am Chem Soc 129:15814–15823. https://doi.org/10.1021/ja0727417
Article
Google Scholar
Frank AT, Bae S-H, Stelzer AC (2013) Prediction of RNA 1H and 13C chemical shifts: a structure based approach. J Phys Chem B 117:13497–13506. https://doi.org/10.1021/jp407254m
Article
Google Scholar
Frank AT, Law SM, Brooks CL 3rd (2014) A simple and fast approach for predicting 1H and 13C chemical shifts: toward chemical shift-guided simulations of RNA. J Phys Chem B 118:12168–12175. https://doi.org/10.1021/jp508342x
Article
Google Scholar
Ghose R, Marino JP, Wiberg KB, Prestegard JH (1994) Dependence of 13C Chemical Shifts on Glycosidic Torsional Angles in Ribonucleic Acids. J Am Chem Soc 116:8827–8828. https://doi.org/10.1021/ja00098a060
Article
Google Scholar
Giessner-Prettre C, Pullman B (1987) Quantum mechanical calculations of NMR chemical shifts in nucleic acids. Q Rev Biophys 20:113–172. https://doi.org/10.1017/s0033583500004169
Article
Google Scholar
Han B, Liu Y, Ginzinger SW, Wishart DS (2011) SHIFTX2: significantly improved protein chemical shift prediction. J Biomol NMR 50:43–57. https://doi.org/10.1007/s10858-011-9478-4
Article
Google Scholar
Helmling C, Keyhani S, Sochor F, Fürtig B, Hengesbach M, Schwalbe H (2015) Rapid NMR screening of RNA secondary structure and binding. J Biomol NMR 63:67–76. https://doi.org/10.1007/s10858-015-9967-y
Article
Google Scholar
Howe JA, Wang H, Fischmann TO, Balibar CJ, Xiao L, Galgoci AM, Malinverni JC, Mayhood T, Villafania A, Nahvi A, Murgolo N, Barbieri CM, Mann PA, Carr D, Xia E, Zuck P, Riley D, Painter RE, Walker SS, Sherborne B, de Jesus R, Pan W, Plotkin MA, Wu J, Rindgen D, Cummings J, Garlisi CG, Zhang R, Sheth PR, Gill CJ, Tang H, Roemer T (2015) Selective small-molecule inhibition of an RNA structural element. Nature 526:672–677. https://doi.org/10.1038/nature15542
ADS
Article
Google Scholar
Hwang TL, Shaka AJ (1995) Water suppression that works. Excitation sculpting using arbitrary wave-forms and pulsed-field gradients. J Magn Reson Ser A 112:275–279. https://doi.org/10.1006/jmra.1995.1047
ADS
Article
Google Scholar
Imai S, Kumar P, Hellen CU, D’Souza VM, Wagner G (2016) An accurately preorganized IRES RNA structure enables eIF4G capture for initiation of viral translation. Nat Struct Mol Biol 23:859–864. https://doi.org/10.1038/nsmb.3280
Article
Google Scholar
Johnson BA, Blevins RA (1994) NMR view: a computer program for the visualization and analysis of NMR data. J Biomol NMR 4:603–614. https://doi.org/10.1007/BF00404272
Article
Google Scholar
Jucker FM, Heus HA, Yip PF, Moors EH, Pardi A (1996) A network of heterogeneous hydrogen bonds in GNRA tetraloops. J Mol Biol 264:968–980. https://doi.org/10.1006/jmbi.1996.0690
Article
Google Scholar
Kao C, Zheng M, Rüdisser S (1999) A simple and efficient method to reduce nontemplated nucleotide addition at the 3 terminus of RNAs transcribed by T7 RNA polymerase. RNA 5:1268–1272. https://doi.org/10.1017/s1355838299991033
Article
Google Scholar
Krähenbühl B, Lukavsky P, Wider G (2014) Strategy for automated NMR resonance assignment of RNA: application to 48-nucleotide K10. J Biomol NMR 59:231–240. https://doi.org/10.1007/s10858-014-9841-3
Article
Google Scholar
Kwok CK, Lam SL (2013) NMR proton chemical shift prediction of T•T mismatches in B-DNA duplexes. J Magn Reson 234:184–189. https://doi.org/10.1016/j.jmr.2013.06.022
ADS
Article
Google Scholar
Lam SL (2007) DSHIFT: a web server for predicting DNA chemical shifts. Nucleic Acids Res 35:W713–W717. https://doi.org/10.1093/nar/gkm320
Article
Google Scholar
Lam SL, Lai KF, Chi LM (2007) Proton chemical shift prediction of A.A mismatches in B-DNA duplexes. J Magn Reson 187:105–111. https://doi.org/10.1016/j.jmr.2007.04.005
ADS
Article
Google Scholar
Legault P, Hoogstraten CG, Metlitzky E, Pardi A (1998) Order, dynamics and metal-binding in the lead-dependent ribozyme. J Mol Biol 284:325–335. https://doi.org/10.1006/jmbi.1998.2181
Article
Google Scholar
Marchant J, Summers MF, Johnson BA (2019) Assigning NMR spectra of RNA, peptides and small organic molecules using molecular network visualization software. J Biomol NMR. https://doi.org/10.1007/s10858-019-00271-3
Article
Google Scholar
Meiler J (2003) PROSHIFT: protein chemical shift prediction using artificial neural networks. J Biomol NMR 26:25–37. https://doi.org/10.1023/a:1023060720156
Article
Google Scholar
Meyer SM, Williams CC, Akahori Y, Tanaka T, Aikawa H, Tong Y, Childs-Disney JL, Disney MD (2020) Small molecule recognition of disease-relevant RNA structures. Chem Soc Rev 49:7167–7199. https://doi.org/10.1039/d0cs00560f
Article
Google Scholar
Ng KS, Lam SL (2015) NMR proton chemical shift prediction of C.C mismatches in B-DNA. J Magn Reson 252:87–93. https://doi.org/10.1016/j.jmr.2015.01.005
ADS
Article
Google Scholar
Norris M, Fetler B, Marchant J, Johnson BA (2016) NMRFx Processor: a cross-platform NMR data processing program. J Biomol NMR 65:205–216. https://doi.org/10.1007/s10858-016-0049-6
Article
Google Scholar
Papasaikas P, Valcárcel J (2016) The spliceosome: the ultimate RNA chaperone and sculptor. Trends Biochem Sci 41:33–45. https://doi.org/10.1016/j.tibs.2015.11.003
Article
Google Scholar
Pardi N, Hogan MJ, Porter FW, Weissman D (2018) mRNA vaccines - a new era in vaccinology. Nat Rev Drug Discov 17:261–279. https://doi.org/10.1038/nrd.2017.243
Article
Google Scholar
Pham VV, Salguero C, Khan SN, Meagher JL, Brown WC, Humbert N, de Rocquigny H, Smith JL, D’Souza VM (2018) HIV-1 Tat interactions with cellular 7SK and viral TAR RNAs identifies dual structural mimicry. Nat Commun 9:4266. https://doi.org/10.1038/s41467-018-06591-6
ADS
Article
Google Scholar
Popenda M, Błażewicz M, Szachniuk M, Adamiak RW (2008) RNA FRABASE version 1.0: an engine with a database to search for the three-dimensional fragments within RNA structures. Nucleic Acids Res 36:D386–391. https://doi.org/10.1093/nar/gkm786
Article
Google Scholar
Popenda M, Szachniuk M, Blazewicz M, Wasik S, Burke EK, Blazewicz J, Adamiak RW (2010) RNA FRABASE 2.0: an advanced web-accessible database with the capacity to search the three-dimensional fragments within RNA structures. BMC Bioinform 11:231. https://doi.org/10.1186/1471-2105-11-231
Article
Google Scholar
Rodnina MV (2016) The ribosome in action: Tuning of translational efficiency and protein folding. Protein Sci 25:1390–1406. https://doi.org/10.1002/pro.2950
Article
Google Scholar
Rossi P, Harbison GS (2001) Calculation of 13C chemical shifts in rna nucleosides: structure-13C chemical shift relationships. J Magn Reson 151:1–8. https://doi.org/10.1006/jmre.2001.2350
ADS
Article
Google Scholar
Sheehy JP, Davis AR, Znosko BM (2010) Thermodynamic characterization of naturally occurring RNA tetraloops. RNA 16:417–429. https://doi.org/10.1261/rna.1773110
Article
Google Scholar
Sripakdeevong P, Cevec M, Chang AT, Erat MC, Ziegeler M, Zhao Q, Fox GE, Gao X, Kennedy SD, Kierzek R, Nikonowicz EP, Schwalbe H, Sigel RK, Turner DH, Das R (2014) Structure determination of noncanonical RNA motifs guided by 1H NMR chemical shifts. Nat Methods 11:413–416. https://doi.org/10.1038/nmeth.2876
Article
Google Scholar
Theimer CA, Feigon J (2006) Structure and function of telomerase RNA. Curr Opin Struct Biol 16:307–318. https://doi.org/10.1016/j.sbi.2006.05.005
Article
Google Scholar
Ulrich EL, Akutsu H, Doreleijers JF, Harano Y, Ioannidis YE, Lin J, Livny M, Mading S, Maziuk D, Miller Z, Nakatani E, Schulte CF, Tolmie DE, Kent Wenger R, Yao H, Markley JL (2008) BioMagResBank. Nucleic Acids Res 36:D402-408. https://doi.org/10.1093/nar/gkm957
Article
Google Scholar
Vallurupalli P, Moore PB (2003) The solution structure of the loop E region of the 5S rRNA from spinach chloroplasts. J Mol Biol 325:843–856. https://doi.org/10.1016/s0022-2836(02)01270-6
Article
Google Scholar
Wang Y, Han G, Jiang X, Yuwen T, Xue Y (2021) Chemical shift prediction of RNA imino groups: application toward characterizing RNA excited states. Nat Commun 12:1595. https://doi.org/10.1038/s41467-021-21840-x
ADS
Article
Google Scholar
Warner KD, Hajdin CE, Weeks KM (2018) Principles for targeting RNA with drug-like small molecules. Nat Rev Drug Discov 17:547–558. https://doi.org/10.1038/nrd.2018.93
Article
Google Scholar
Winkle M, El-Daly SM, Fabbri M, Calin GA (2021) Noncoding RNA therapeutics - challenges and potential solutions. Nat Rev Drug Discov. https://doi.org/10.1038/s41573-021-00219-z
Article
Google Scholar
Wishart DS, Bigam CG, Yao J, Abildgaard F, Dyson HJ, Oldfield E, Markley JL, Sykes BD (1995) 1H, 13C, and 15N chemical shift referencing in biomolecular NMR. J Biomol NMR 6:135–140. https://doi.org/10.1007/BF00211777
Article
Google Scholar
Zhang K, Frank AT (2020) Conditional prediction of ribonucleic acid secondary structure using chemical shifts. J Phys Chem B 124:470–478. https://doi.org/10.1021/acs.jpcb.9b09814
Article
Google Scholar
Zhang K, Abdallah K, Ajmera P, Finos K, Looka A, Mekhael J, Frank AT (2021) CS-annotate: a tool for using NMR chemical shifts to annotate RNA structure. J Chem Inf Model 61:1545–1549. https://doi.org/10.1021/acs.jcim.1c00006
Article
Google Scholar