Skip to main content
Log in

Sequence specific 1H, 13C and 15N resonance assignments of the C-terminal domain of human γS-crystallin

  • Article
  • Published:
Biomolecular NMR Assignments Aims and scope Submit manuscript

Abstract

The high solubility and stability of crystallins present in the human eye lens maintains its transparency and refractive index with negligible protein turnover. Monomeric γ-crystallins and oligomeric β-crystallins are made up of highly homologous double Greek key domains. These domains are symmetric and possess higher stability as a result of the complex topology of individual Greek key motifs. γS-crystallin is one of the most abundant structural βγ-crystallins present in the human eye lens. In order to understand the structural stability of individual domains of human γS-crystallin in isolation vis-à-vis full length protein, we set out to structurally characterize its C-terminal domain (abbreviated hereafter as γS-CTD) by solution NMR. In this direction, we have cloned, over-expressed, isolated and purified the γS-CTD. The 2D [15N-1H] HSQC recorded with uniformly 13C/15N labeled γS-CTD showed a highly dispersed spectrum indicating the protein to adopt an ordered conformation. In this paper, we report almost complete sequence-specific 1H, 13C and 15N resonance assignments of γS-CTD using a suite of heteronuclear 3D NMR experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

γS-CTD:

C-terminal domain of human γS-crystallin

HSQC:

Heteronuclear single quantum correlation

NMR:

Nuclear magnetic resonance

References

  • Andley UP (2007) Crystallins in the eye: function and pathology. Prog Retinal Eye Res 26:78–98

    Article  Google Scholar 

  • Andley UP, Mathur S, Griest TA, Petrash JM (1996) Cloning, expression and chaperone-like activity of human alpha A-crystallin. J Biol Chem 271:31973–31980

    Article  Google Scholar 

  • Atreya HS, Chary KVR, Govil G (2002) Automated NMR assignments of proteins for high throughput structure determination: TATAPRO II. Curr Sci 83(11):1372–1376

    Google Scholar 

  • Bari KJ, Sharma S, Chary KVR (2018) Sequence specific 1H, 13C and 15N resonance assignments of a cataract-related variant G57W of human γS-crystallin. Biomol NMR Assign 12:51–55

    Article  Google Scholar 

  • Barnwal RP, Rout AK, Atrya HS, Chary KVR (2008) Identification of C-terminal neighbours of amino acid residues without an aliphatic 13C C as an aid to NMR assignments in proteins. J Biomol NMR 4:191–197

    Article  Google Scholar 

  • Bateman OA, Lubsen NH, Slingsby C (2001) Association behaviour of human βB1-crystallin and its truncated forms. Exp Eye Res 73:321–331

    Article  Google Scholar 

  • Bateman OA, Sarra R, van Genesen ST, Kappe G, Lubsen NH, Slingsby C (2003) The stability of human acidic β-crystallin oligomers and hetero-oligomers. Exp Eye Res 77:409–422

    Article  Google Scholar 

  • Bax A, Grzesiek S (1993) Methodological advances in protein NMR. Acc Chem Res 22:131–138

    Article  Google Scholar 

  • Bax A, Ikura M, Kay LE, Barbato G, Spera S (1991) Multidimensional triple resonance NMR spectroscopy of isotopically uniformly enriched proteins: a powerful new strategy for structure determination. Ciba Found Symp 161:108–119

    Google Scholar 

  • Benedek GB, Clark IJ, Serrallach EN, Young CY, Mengel L, Sauke T, Bagg A, Benedek K (1979) Light scattering and reversible cataracts in the calf and human lens. Philos Trans R Soc London A 293:329–340

    Article  ADS  Google Scholar 

  • Bloemendal H, de Jong W, Jaenicke R, Lubsen NH, Slingsby C, Tardieu A (2004) Ageing and vision: structure, stability and function of lens crystallins. Prog Biophys Mol Biol 86:407–485

    Article  Google Scholar 

  • Bova MP, Ding LL, Horwitz J, Fung BK (1997) Subunit exchange of alpha A-crystallin. J Biol Chem 272:29511–29517

    Article  Google Scholar 

  • Brubaker WD, Freites JA, Golchert KJ, Shapiro RA, Morikis V, Tobias DJ, Martin RW (2011) Separating instability from aggregation propensity in gammaS-crystallin variants. Biophys J 100(2):498–506

    Article  Google Scholar 

  • Chang T, Chang WC (1987) Cloning and sequencing of a carp beta S-crystallin cDNA. Biochim Biophys Acta 910:89–92

    Article  Google Scholar 

  • Chary KVR, Govil G (2008) NMR in biological systems: from molecules to humans. Springer, Dordrecht

    Book  Google Scholar 

  • Delaglio F, Grzesiek S, Vuister G, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293

    Article  Google Scholar 

  • Edison AS, Abildgaard F, Westler WM, Mooberry ES, Markley JL (1994) Practical introduction to theory and implementation of multinuclear, multidimensional nuclear magnetic resonance experiments. Methods Enzymol 239:3–79

    Article  Google Scholar 

  • Gallivan JP, Dougherty DA (1999) Cation-pi interactions in structural biology. Proc Natl Acad Sci USA 96:9459–9464

    Article  ADS  Google Scholar 

  • Gill D, Klose R, Munier FL, McFadden M, Priston M, Billingsley G, Ducrey N, Schorderet DF, Heon E (2000) Genetic heterogeneity of the Coppock-like cataract: a mutation in CRYBB2 on chromosome 22q11.2. Invest Opthalmol Vis Sci 41:159–165

    Google Scholar 

  • Goddard TD, Kneller DG (2011) SPARKY 3. University of California, San Francisco

    Google Scholar 

  • Horwitz J (1992) Alpha-crystallin can function as a molecular chaperone. Proc Natl Acad Sci USA 89(21):10,449–453

    Article  Google Scholar 

  • Jaenicke R, Slingsby C (2001) Lens crystallins and their microbial homologs: structure, stability and function. Crit Rev Biochem Mol Biol 36:435–499

    Article  Google Scholar 

  • Jones SE, Jomary C, Grist J, Makwana J, Neal MJ (1999) Retinal expression of gamma-crystallins in the mouse. Invest Ophthalmol Vis Sci 40:3017–3020

    Google Scholar 

  • Keller R (2004) The computer aided resonance assignment tutorial. CANTINA, Goldau

    Google Scholar 

  • Khan I, Chandani S, Balasubramanian D (2016) Structural study of the G57W mutant of human gamma-S-crystallin, associated with congenital cataract. Mol Vis 22:771–782

    Google Scholar 

  • Lampi KJ, Oxford JT, Ba ̈chinger HP, Shearer TR, David LL, Kapfer DM (2001) Deamidation of human β B1 alters the elongated structure of the dimer. Exp Eye Res 72:279–288

    Article  Google Scholar 

  • Litt M, Carrero-Valenzuela R, LaMorticella DM, Schultz DW, Mitchell TN, Kramer P, Maumenee IH (1997) Autosomal dominant cerulean cataract is associated with a chain termination mutation in the human β-crystallin gene CRYBB2. Hum Mol Genet 6:665–668

    Article  Google Scholar 

  • Lubsen NH, Aarts HJ, Schoenmakers JG (1988) The evolution of lenticular proteins: the β- and γ-crystallin super gene family. Prog Biophys Mol Biol 51:47–76

    Article  Google Scholar 

  • Ma Z, Piszczek G, Wingfield PT, Sergeev YV, Hejtmancik JF (2009) The G18V CRYGS mutation associated with human cataracts increases gammaS-crystallin sensitivity to thermal and chemical stress. Biochemistry 48:7334–7341

    Article  Google Scholar 

  • MacDonald JT, Purkiss AG, Smith MA, Evans P, Goodfellow JM, Slingsby C (2005) Unfolding crystallins: the destabilizing role of a β-hairpin cysteine in βB2-crystallin by simulation and experiment. Protein Sci 14:1282–1292

    Article  Google Scholar 

  • Mills IA, Flaugh SL, Kosinski-Collins MS, King JA (2007) Folding and stability of the isolated Greek key domains of the long-lived human lens proteins γD-crystallin and γS-crystallin. Protein Sci 16:2427–2444

    Article  Google Scholar 

  • Montelione GT, Lyons BA, Emerson SD, Tashiro M (1992) An efficient triple resonance experiment using carbon-13 isotopic mixing for determining sequence-specific resonance assignment of isotopically enriched proteins. J Am Chem Soc 113:5490–5492

    Google Scholar 

  • Muchowski PJ, Wacker JL (2005) Modulation of neurodegeneration by molecular chaperones. Nat Rev Neurosci 6:11–22

    Article  Google Scholar 

  • Muhandiram DR, Farrow NA, Xu GY, Smallcombe SH, Kay LE (1993) A gradient C NOESY-HSQC experiment for recording NOESY spectra of “C-labeled proteins dissolved in ­H2O”. J Magn Reson B 102:317–321

    Article  Google Scholar 

  • Nogales E (2001) Structural insight into microtubule function. Annu Rev Biophys Biomol Struct 30:397–420

    Article  Google Scholar 

  • Ravi PB, Chary KVR (2008) An efficient method for secondary structure determination in polypeptides by NMR. Curr Sci 94:1302–1306

    Google Scholar 

  • Spera S, Bax A (1991) Empirical correlation between protein backbone conformation and Ca and Cb 13C nuclear magnetic resonance chemical shifts. J Am Chem Soc 113:5490–5492

    Article  Google Scholar 

  • Vanita SV, Reis A, Jung M, Singh D, Sperling K, Singh JR, Burger J (2001) A unique form of autosomal dominant cataract explained by gene conversion between beta-crystallin B2 and its pseudogene. J Med Genet 38:392–396

    Article  Google Scholar 

  • Vendra VPR, Agarwal G, Chandani S, Talla V, Srinivasan N, Balasubramanian D (2013) Structural integrity of the Greek key motif in-crystallins is vital for central eye lens transparency. PLoS ONE 8(1–10):e70336

    Article  ADS  Google Scholar 

  • Vendra VP, Khan I, Chandani S, Muniyandi A, Balasubramanian D (2016) Gamma crystallins of the human eye lens. Biochim Biophys Acta 1860(1):333–343

    Article  Google Scholar 

  • Wenk M, Herbst R, Hoeger D, Kretschmar M, Lubsen NH, Jaenicke R (2000) Gamma S-crystallin of bovine and human eye lens: solution structure, stability and folding of the intact two-domain protein and its separate domains. Biophys Chem 86:95–108

    Article  Google Scholar 

  • Wishart DS, Bigam CG, Holm A, Hodges RS, Sykes BD (1995) 1H, 13C and 15N random coil NMR chemical shifts of the common amino acids. I. Investigations of nearest-neighbor effects. J Biomol NMR 5:67–81

    Article  Google Scholar 

  • Wuthrich K, Thrich KW, Wuthrich K (1986) NMR of proteins and nucleic acids. Wiley, London

    Book  Google Scholar 

  • Zhang C, Gehlbach P, Gongora C, Cano M, Fariss R, Hose S, Nath A, Green WR, Goldberg MF, Zigler JS Jr, Sinha D (2005) A potential role for beta- and gamma-crystallins in the vascular remodeling of the eye. Dev Dyn 234:36–47

    Article  Google Scholar 

Download references

Acknowledgements

The facilities provided by the National Facility for High Field NMR, supported by the Department of Science and Technology (DST), Department of Biotechnology (DBT), Council of Scientific and Industrial Research (CSIR) and the high field NMR Centre at Indian Institute of Chemical Technology (IICT), Hyderabad are gratefully acknowledged. KVRC acknowledges the financial support of JC Bose fellowship of DST (Govt. of India).

Author information

Authors and Affiliations

Authors

Contributions

KJB and SS have contributed equally to this work.

Corresponding author

Correspondence to Kandala V. R. Chary.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bari, K.J., Sharma, S. & Chary, K.V.R. Sequence specific 1H, 13C and 15N resonance assignments of the C-terminal domain of human γS-crystallin. Biomol NMR Assign 13, 43–47 (2019). https://doi.org/10.1007/s12104-018-9848-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12104-018-9848-x

Keywords

Navigation