Biomolecular NMR Assignments

, Volume 12, Issue 1, pp 205–214 | Cite as

Solid-state [13C–15N] NMR resonance assignment of hepatitis B virus core protein

Article
  • 142 Downloads

Abstract

Each year, nearly 900,000 deaths are due to serious liver diseases caused by chronic hepatitis B virus infection. The viral particle is composed of an outer envelope and an inner icosahedral nucleocapsid formed by multiple dimers of a ~ 20 kDa self-assembling core protein (Cp). Here we report the solid-state 13C and 15N resonance assignments of the assembly domain, Cp149, of the core protein in its capsid form. A secondary chemical shift analysis of the 140 visible residues suggests an overall alpha-helical three-dimensional fold matching that derived for Cp149 from the X-ray crystallography of the capsid, and from solution-state NMR of the Cp149 dimer. Interestingly, however, at three distinct regions the chemical shifts in solution differ significantly between core proteins in the capsid state versus in the dimer state, strongly suggesting the respective residues to be involved in capsid assembly.

Keywords

Hepatitis B virus Core protein Nucleocapsid Solid-state NMR Assignments 

Notes

Acknowledgements

This work was supported by the French ANR (ANR-14-CE09-0024B), the LABEX ECOFECT (ANR-11-LABX-0048) within the Université de Lyon program Investissements d’Avenir (ANR-11-IDEX-0007) (AB), the Swiss National Science Foundation (Grant 200020_159707) (BHM), the DFG Grant NA154/9-4 (MN), a doctoral stipend from the Chinese Scientific Council (SW) and by the Marie Skłodowska-Curie program (H2020-MSCA-IF-2016 748516) (LL). We thank the Centre d’Imagerie Quantitative Lyon-Est (CIQLE) for the access and training on the electron microscopy platform.

References

  1. Abramov G, Morag O, Goldbourt A (2015) Magic-angle spinning NMR of intact bacteriophages: insights into the capsid, DNA and their interface. J Magn Reson 253:80–90.  https://doi.org/10.1016/j.jmr.2015.01.011 ADSCrossRefGoogle Scholar
  2. Andreas LB, Jaudzems K, Stanek J et al (2016) Structure of fully protonated proteins by proton-detected magic-angle spinning NMR. Proc Natl Acad Sci USA 113:9187–9192.  https://doi.org/10.1073/pnas.1602248113 CrossRefGoogle Scholar
  3. Birnbaum F, Nassal M (1990) Hepatitis B virus nucleocapsid assembly: primary structure requirements in the core protein. J Virol 64:3319–3330Google Scholar
  4. Böckmann A, Gardiennet C, Verel R et al (2009) Characterization of different water pools in solid-state NMR protein samples. J Biomol NMR 45:319–327.  https://doi.org/10.1007/s10858-009-9374-3 CrossRefGoogle Scholar
  5. Böttcher B, Wynne SA, Crowther RA (1997) Determination of the fold of the core protein of hepatitis B virus by electron cryomicroscopy. Nature 386:88–91.  https://doi.org/10.1038/386088a0 ADSCrossRefGoogle Scholar
  6. Bourne CR, Finn MG, Zlotnick A (2006) Global structural changes in hepatitis B virus capsids induced by the assembly effector HAP1. J Virol 80:11055–11061.  https://doi.org/10.1128/JVI.00933-06 CrossRefGoogle Scholar
  7. Chen C, Wang JCY, Zlotnick A (2011) A kinase chaperones hepatitis B virus capsid assembly and captures capsid dynamics in vitro. PLoS Pathog 7:e1002388–e1002310.  https://doi.org/10.1371/journal.ppat.1002388 CrossRefGoogle Scholar
  8. Conway JF, Cheng N, Zlotnick A et al (1997) Visualization of a 4-helix bundle in the hepatitis B virus capsid by cryo-electron microscopy. Nature 386:91–94.  https://doi.org/10.1038/386091a0 ADSCrossRefGoogle Scholar
  9. Crowther RA, Kiselev NA, Böttcher B et al (1994) Three-dimensional structure of hepatitis B virus core particles determined by electron cryomicroscopy. Cell 77:943–950CrossRefGoogle Scholar
  10. Dryden KA, Wieland SF, Whitten-Bauer C et al (2006) Native hepatitis B virions and capsids visualized by electron cryomicroscopy. Mol Cell 22:843–850.  https://doi.org/10.1016/j.molcel.2006.04.025 CrossRefGoogle Scholar
  11. Durantel D, Zoulim F (2016) New antiviral targets for innovative treatment concepts for hepatitis B virus and hepatitis delta virus. J Hepatol 64:S117–S131.  https://doi.org/10.1016/j.jhep.2016.02.016 CrossRefGoogle Scholar
  12. Freund SMV, Johnson CM, Jaulent AM, Ferguson N (2008) Moving towards high-resolution descriptions of the molecular interactions and structural rearrangements of the human hepatitis B core protein. J Mol Biol 384:1301–1313.  https://doi.org/10.1016/j.jmb.2008.10.020 CrossRefGoogle Scholar
  13. Gallina A, Bonelli F, Zentilin L et al (1989) A recombinant hepatitis B core antigen polypeptide with the protamine-like domain deleted self-assembles into capsid particles but fails to bind nucleic acids. J Virol 63:4645–4652Google Scholar
  14. Habenstein B, Wasmer C, Bousset L et al (2011) Extensive de novo solid-state NMR assignments of the 33 kDa C-terminal domain of the Ure2 prion. J Biomol NMR 51:235–243.  https://doi.org/10.1007/s10858-011-9530-4 CrossRefGoogle Scholar
  15. Han Y, Ahn J, Concel J et al (2010) Solid-state NMR studies of HIV-1 capsid protein assemblies. J Am Chem Soc 132:1976–1987.  https://doi.org/10.1021/ja908687k CrossRefGoogle Scholar
  16. Heger-Stevic J, Kolb P, Walker A, Nassal M Displaying whole-chain proteins on hepatitis B virus capsid-like particles. In: Wege C, Lomonossoff G (eds) Virus-Derived Nanoparticles for Advanced Technologies, Chap 33. Springer, Berlin (in press)Google Scholar
  17. Katen SP, Tan Z, Chirapu SR et al (2013) Assembly-directed antivirals differentially bind quasiequivalent pockets to modify hepatitis B virus capsid tertiary and quaternary structure. Structure 21:1406–1416.  https://doi.org/10.1016/j.str.2013.06.013 CrossRefGoogle Scholar
  18. Klumpp K, Lam AM, Lukacs C et al (2015) High-resolution crystal structure of a hepatitis B virus replication inhibitor bound to the viral core protein. Proc Natl Acad Sci USA 112:15196–15201.  https://doi.org/10.1073/pnas.1513803112 ADSCrossRefGoogle Scholar
  19. Morag O, Abramov G, Goldbourt A (2014) Complete chemical shift assignment of the ssDNA in the filamentous bacteriophage fd reports on its conformation and on its interface with the capsid shell. J Am Chem Soc 136:2292–2301.  https://doi.org/10.1021/ja412178n CrossRefGoogle Scholar
  20. Nassal M (1992) The arginine-rich domain of the hepatitis B virus core protein is required for pregenome encapsidation and productive viral positive-strand DNA synthesis but not for virus assembly. J Virol 66:4107–4116Google Scholar
  21. Nassal M (2015) HBV cccDNA: viral persistence reservoir and key obstacle for a cure of chronic hepatitis B. Gut 64:1972.  https://doi.org/10.1136/gutjnl-2015-309809 CrossRefGoogle Scholar
  22. Ning X, Basagoudanavar SH, Liu K et al (2017) Capsid phosphorylation state and hepadnavirus virion secretion. J Virol 91:e00092-17-16.  https://doi.org/10.1128/JVI.00092-17 CrossRefGoogle Scholar
  23. Patel N, White SJ, Thompson RF et al (2017) HBV RNA pre-genome encodes specific motifs that mediate interactions with the viral core protein that promote nucleocapsid assembly. Nat Microbiol.  https://doi.org/10.1038/nmicrobiol.2017.98 Google Scholar
  24. Pei Y, Wang C, Yan SF, Liu G (2017) Past, current, and future developments of therapeutic agents for treatment of chronic hepatitis B virus infection. J Med Chem.  https://doi.org/10.1021/acs.jmedchem.6b01442 Google Scholar
  25. Penzel S, Smith AA, Agarwal V et al (2015) Protein resonance assignment at MAS frequencies approaching 100 kHz: a quantitative comparison of J-coupling and dipolar- coupling-based transfer methods. J Biomol NMR 1–22.  https://doi.org/10.1007/s10858-015-9975-y
  26. Quinn CM, Lu M, Suiter CL et al (2015) Magic angle spinning NMR of viruses. Prog Nucl Magn Reson Spectrosc 86–87:21–40.  https://doi.org/10.1016/j.pnmrs.2015.02.003 CrossRefGoogle Scholar
  27. Revill P, Testoni B, Locarnini S, Zoulim F (2016) Global strategies are required to cure and eliminate HBV infection. Nat Rev Gastroenterol Hepatol 13:239–248.  https://doi.org/10.1038/nrgastro.2016.7 CrossRefGoogle Scholar
  28. Schuetz A, Wasmer C, Habenstein B et al (2010) Protocols for the sequential solid-state NMR spectroscopic assignment of a uniformly labeled 25 kDa protein: HET-s(1-227). Chem Eur J of Chem Bio 11:1543–1551.  https://doi.org/10.1002/cbic.201000124 CrossRefGoogle Scholar
  29. Selzer L, Kant R, Wang JCY et al (2015) Hepatitis B virus core protein phosphorylation sites affect capsid stability and transient exposure of the C-terminal domain. J Biol Chem 290:28584–28593.  https://doi.org/10.1074/jbc.M115.678441 CrossRefGoogle Scholar
  30. Stanek J, Andreas LB, Jaudzems K et al (2016) NMR spectroscopic assignment of backbone and side-chain protons in fully protonated proteins: microcrystals, sedimented assemblies, and amyloid fibrils. Angew Chem 128:15730–15735.  https://doi.org/10.1002/ange.201607084 CrossRefGoogle Scholar
  31. Stevens TJ, Fogh RH, Boucher W et al (2011) A software framework for analysing solid-state MAS NMR data. J Biomol NMR 51:437–447.  https://doi.org/10.1007/s10858-011-9569-2 CrossRefGoogle Scholar
  32. Suiter CL, Quinn CM, Lu M et al (2015) MAS NMR of HIV-1 protein assemblies. J Magn Reson 253:10–22.  https://doi.org/10.1016/j.jmr.2014.12.009 ADSCrossRefGoogle Scholar
  33. Vranken WF, Boucher W, Stevens TJ et al (2005) The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins 59:687–696.  https://doi.org/10.1002/prot.20449 CrossRefGoogle Scholar
  34. Wishart DS, Bigam CG, Holm A et al (1995) 1H, 13C and 15N random coil NMR chemical shifts of the common amino acids. I. Investigations of nearest-neighbor effects. J Biomol NMR 5:67–81CrossRefGoogle Scholar
  35. World Health Organization (2017) Global hepatitis report. http://www.who.int
  36. Wynne SA, Crowther RA, Leslie AG (1999) The crystal structure of the human hepatitis B virus capsid. Mol Cell 3:771–780CrossRefGoogle Scholar
  37. Yu X, Jin L, Jih J et al (2013) 3.5 Å cryo-EM structure of hepatitis B virus core assembled from full-length core protein. PLoS ONE 8:e69729–e69711.  https://doi.org/10.1371/journal.pone.0069729 ADSCrossRefGoogle Scholar
  38. Zlotnick A, Venkatakrishnan B, Tan Z et al (2015) Core protein: a pleiotropic keystone in the HBV lifecycle. Antiviral Res 121:82–93.  https://doi.org/10.1016/j.antiviral.2015.06.020 CrossRefGoogle Scholar
  39. Zoulim F, Durantel D (2015) Antiviral therapies and prospects for a cure of chronic hepatitis B. Cold Spring Harb Perspect Med 5:a021501–a021501.  https://doi.org/10.1101/cshperspect.a021501 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institut de Biologie et Chimie des Protéines, Bases Moléculaires et Structurales des Systèmes Infectieux, Labex Ecofect, UMR 5086 CNRSUniversité de LyonLyonFrance
  2. 2.Physical ChemistryETH ZurichZurichSwitzerland
  3. 3.Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris SudUniversité Paris-SaclayGif sur Yvette CedexFrance
  4. 4.Department of Internal Medicine II/Molecular BiologyUniversity Hospital FreiburgFreiburgGermany

Personalised recommendations