Skip to main content
Log in

Resonance assignments and secondary structure of a phytocystatin from Sesamum indicum

  • Article
  • Published:
Biomolecular NMR Assignments Aims and scope Submit manuscript

Abstract

A cDNA encoding a cysteine protease inhibitor, cystatin was cloned from sesame (Sesamum indicum L.) seed. This clone was constructed into an expression vector and expressed in E. coli and purified to homogeneous. The recombinant sesame cystatin (SiCYS) showed effectively inhibitory activity toward C1 cysteine proteases. In order to unravel its inhibitory action from structural point of view, multidimensional heteronuclear NMR techniques were used to characterize the structure of SiCYS. The full 1H, 15N, and 13C resonances of SiCYS were assigned. The secondary structure of SiCYS was identified by using the assigned chemical shifts of 1Hα, 13Cα, 13Cβ, and 13CO through the consensus chemical shift index (CSI). The results of CSI analysis of SiCYS suggest eight β-strands (residues 33–46, 51–61, 63–75, 80–87, 150–155, 157–169, 172–183, and 192–195) and two α-helices (residues 16–30, and 120–135).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abe K, Emori Y, Kondo H, Suzuki K, Arai S (1987) Molecular cloning of a cysteine proteinase inhibitor of rice (oryzacystatin). Homology with animal cystatins and transient expression in the ripening process of rice seeds. J Biol Chem 262(35):16793–16797

    Google Scholar 

  • Arai S, Matsumoto I, Emori Y, Abe K (2002) Plant seed cystatins and their target enzymes of endogenous and exogenous origin. J Agric Food Chem 50(22):6612–6617

    Article  Google Scholar 

  • Barrett AJ (1986) The cystatins: a diverse superfamily of cysteine peptidase inhibitors. Biomed Biochim Acta 45(11–12):1363–1374

    Google Scholar 

  • Belenghi B, Acconcia F, Trovato M, Perazzolli M, Bocedi A, Polticelli F, Ascenzi P, Delledonne M (2003) AtCYS1, a cystatin from Arabidopsis thaliana, suppresses hypersensitive cell death. Eur J Biochem 270(12):2593–2604

    Article  Google Scholar 

  • Benchabane M, Schluter U, Vorster J, Goulet MC, Michaud D (2010) Plant cystatins. Biochimie 92(11):1657–1666. doi:10.1016/j.biochi.2010.06.006

    Article  Google Scholar 

  • Callis J (1995) Regulation of protein degradation. Plant Cell 7(7):845–857. doi:10.1105/tpc.7.7.845

    Article  Google Scholar 

  • Girard C, Rivard D, Kiggundu A, Kunert K, Gleddie SC, Cloutier C, Michaud D (2007) A multicomponent, elicitor-inducible cystatin complex in tomato, Solanum lycopersicum. New Phytol 173(4):841–851. doi:10.1111/j.1469-8137.2007.01968.x

    Article  Google Scholar 

  • Gutierrez-Campos R, Torres-Acosta JA, Saucedo-Arias LJ, Gomez-Lim MA (1999) The use of cysteine proteinase inhibitors to engineer resistance against potyviruses in transgenic tobacco plants. Nat Biotechnol 17(12):1223–1226. doi:10.1038/70781

    Article  Google Scholar 

  • Irene D, Chung TY, Chen BJ, Liu TH, Li FY, Tzen JT, Wang CI, Chyan CL (2012) Solution structure of a phytocystatin from Ananas comosus and its molecular interaction with papain. PLoS One 7(11):e47865. doi:10.1371/journal.pone.0047865

    Article  ADS  Google Scholar 

  • Khaznadji E, Collins P, Dalton JP, Bigot Y, Moire N (2005) A new multi-domain member of the cystatin superfamily expressed by Fasciola hepatica. Int J Parasitol 35(10):1115–1125. doi:10.1016/j.ijpara.2005.05.001

    Article  Google Scholar 

  • Kouzuma Y, Inanaga H, Doi-Kawano K, Yamasaki N, Kimura M (2000) Molecular cloning and functional expression of cDNA encoding the cysteine proteinase inhibitor with three cystatin domains from sunflower seeds. J Biochem 128(2):161–166

    Article  Google Scholar 

  • Margis R, Reis EM, Villeret V (1998) Structural and phylogenetic relationships among plant and animal cystatins. Arch Biochem Biophys 359(1):24–30. doi:10.1006/abbi.1998.0875

    Article  Google Scholar 

  • Martinez M, Diaz-Mendoza M, Carrillo L, Diaz I (2007) Carboxy terminal extended phytocystatins are bifunctional inhibitors of papain and legumain cysteine proteinases. FEBS Lett 581(16):2914–2918. doi:10.1016/j.febslet.2007.05.042

    Article  Google Scholar 

  • Nissen MS, Kumar GN, Youn B, Knowles DB, Lam KS, Ballinger WJ, Knowles NR, Kang C (2009) Characterization of Solanum tuberosum multicystatin and its structural comparison with other cystatins. Plant Cell 21(3):861–875. doi:10.1105/tpc.108.064717

    Article  Google Scholar 

  • Pernas M, Sanchez-Monge R, Salcedo G (2000) Biotic and abiotic stress can induce cystatin expression in chestnut. FEBS Lett 467(2–3):206–210

    Article  Google Scholar 

  • Shyu DJ, Chou WM, Yiu TJ, Lin CP, Tzen JT (2004a) Cloning, functional expression, and characterization of cystatin in sesame seed. J Agric Food Chem 52(5):1350–1356. doi:10.1021/jf034989v

    Article  Google Scholar 

  • Shyu DJ, Chyan CL, Tzen JT, Chou WM (2004b) Molecular cloning, expression, and functional characterization of a cystatin from pineapple stem. Biosci Biotechnol Biochem 68(8):1681–1689

    Article  Google Scholar 

  • Soares-Costa A, Beltramini LM, Thiemann OH, Henrique-Silva F (2002) A sugarcane cystatin: recombinant expression, purification, and antifungal activity. Biochem Biophys Res Commun 296(5):1194–1199

    Article  Google Scholar 

  • Solomon M, Belenghi B, Delledonne M, Menachem E, Levine A (1999) The involvement of cysteine proteases and protease inhibitor genes in the regulation of programmed cell death in plants. Plant Cell 11(3):431–444

    Article  Google Scholar 

  • Turk B, Turk V, Turk D (1997) Structural and functional aspects of papain-like cysteine proteinases and their protein inhibitors. Biol chem 378(3–4):141–150

    Google Scholar 

  • Turk V, Stoka V, Turk D (2008) Cystatins: biochemical and structural properties, and medical relevance. Front Biosci 13:5406–5420

    Article  Google Scholar 

  • Valadares NF, de Oliveira-Silva R, Cavini IA, Marques Ide A, Pereira HD, Soares-Costa A, Henrique-Silva F, Kalbitzer HR, Munte CE, Garratt RC (2013) X-ray crystallography and NMR studies of domain-swapped canecystatin-1. FEBS J 280(4):1028–1038. doi:10.1111/febs.12095

    Article  Google Scholar 

  • Vray B, Hartmann S, Hoebeke J (2002) Immunomodulatory properties of cystatins. Cell Mol Life Sci CMLS 59(9):1503–1512

    Article  Google Scholar 

  • Wishart DS, Sykes BD (1994) Chemical shifts as a tool for structure determination. Methods Enzymol 239:363–392

    Article  Google Scholar 

  • Yang AH, Yeh KW (2005) Molecular cloning, recombinant gene expression, and antifungal activity of cystatin from taro (Colocasia esculenta cv. Kaosiung no. 1). Planta 221(4):493–501. doi:10.1007/s00425-004-1462-8

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from Ministry of Education and Ministry of Science and Technology, Taiwan, ROC (number NSC102-2113-M-259-007 and MOST 103-2113-M259-008). The NMR spectra were obtained at National Dong Hwa University and at High-Field Biomacromolecular NMR Core Facility, National Taiwan University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chia-Lin Chyan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, YJ., Irene, D., Lo, CJ. et al. Resonance assignments and secondary structure of a phytocystatin from Sesamum indicum . Biomol NMR Assign 9, 309–311 (2015). https://doi.org/10.1007/s12104-015-9598-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12104-015-9598-y

Keywords

Navigation