Skip to main content

Abstract

Serine proteinases play important roles in many physiological processes and in consequence, when unbalanced, are responsible for numerous severe diseases. The most predominant mechanism of their control is the ubiquitous presence of their inhibitors. On the basis of their inhibition mode, serine proteinase inhibitors are classified into canonical (standard mechanism) inhibitors, serpins and non-canonical inhibitors. The best studied are inhibitors assigned to the first group. At least 18 canonical inhibitor families have been recognized. Inhibitors isolated from the seeds of Cucurbitaceae are small (around 30 amino acid residues), containing three disulfide brides. Some of them are characterized by a cyclic polypeptide backbone. Head-to-tail cyclization is also present in the smallest (14 amino acid residues) trypsin inhibitor isolated from sunflower seeds. All these potent inhibitors display well-defined, rigid structures and, unlike most proteins, are also resistant to denaturizing agents. Modifications introduced into the molecules of these low-molecular-mass inhibitors are well tolerated, retaining their tertiary structure and inhibitory activity. They are able to cross cell membranes and are the first examples of cyclic cell-penetrating peptides. Recent results obtained on plant peptidic inhibitors and discussed in this mini-review have proved that they are promising molecules for drug design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bode W, Huber R (1992) Natural protein proteinase inhibitors and their interaction with proteinases. Eur J Biochem 204:433–451

    Article  PubMed  CAS  Google Scholar 

  2. Laskowski M Jr (2000) Qasim MA, What can the structures of enzyme-inhibitor complexes tell us about the structures of enzyme substrate complexes? BBA 1477:324–337

    Article  PubMed  CAS  Google Scholar 

  3. Schechter I, Berger A (1967) On the size of the active site in proteases. I. Papain. Biochem Bophys Res Commun 27:157–162

    Article  CAS  Google Scholar 

  4. Carrell RW, Travis J (1985) Trends α1-antitrypsin and the serpins: Variation and countervariation. Biochem Sci 10:20–24

    Article  CAS  Google Scholar 

  5. Corral-Rodriguez MA, Macedo-Ribeiro S, Pereira PJB, Fuentes-Prior P (2010) Leech-derived thrombin inhibitors: from structures to mechanisms to clinical applications. J Med Chem 53:3847–3861

    Article  PubMed  CAS  Google Scholar 

  6. Rowlings ND, Tolle DP, Barret AJ (2004) Evolutionary families of peptidase inhibitors. Biochem J 378:705–716

    Article  Google Scholar 

  7. Wieczorek M, Otlewski J, Cook J, Parks K, Leluk J, Wilimowska-Pelc A et al (1985) The squash family of serine proteinase inhibitors: amino acid sequences and association equilibrium constants of inhibitors from squash, summer squash, zucchini, and cucumber seeds. Biochem Biophys Res Co 126:646–652

    Article  CAS  Google Scholar 

  8. Pallahgy PK, Norton RS, Nielsen KJ, Craik DJ (1994) A common structural motif incorporating a cystine knot and a triple-stranded beta-sheet in toxic and inhibitory polypeptides. Protein Sci 3:1833–1839

    Article  Google Scholar 

  9. Hernandez J-F, Gagnon J, Chiche L, Nguyen TM, Andrieu J-P, Heitz A et al (2000) Squash trypsin inhibitors from Momordica cochinchinensis exhibit an atypical macrocyclic structure. Biochemistry 39:5722–5730

    Article  PubMed  CAS  Google Scholar 

  10. Ireland DC, Clark RJ, Daly NL, Craik DJ (2010) Isolation, sequencing, and structure-activity relationships of cyclotides. J Nat Prod 73:1610–1622

    Article  PubMed  CAS  Google Scholar 

  11. Kupryszewski G, Ragnarsson U, Rolka K, Wilusz T (1985) Synthesis of trypsin inhibitor CMTI III from squash seeds (Cucurbita maxima). Experientia 41:1422–1423

    Article  CAS  Google Scholar 

  12. Favel A, Mattras H, Coletti-Previero MA, Zwilling R, Robinson EA, Castro B (1989) Protease inhibitors from Ecballium elaterium seeds. Int J Pept Protein Res 33:202–208

    Article  PubMed  CAS  Google Scholar 

  13. Walewska A, Jaśkiewicz A, Bulaj G, Rolka K (2011) Selenopeptide analogs of EETI-II retain potent trypsin inhibitory activities. Chem Biol Drug Des 77:93–97

    Article  PubMed  CAS  Google Scholar 

  14. Le-Nguyen D, Mattras H, Coletti-Previero MA, Castro B (1989) Design and chemical synthesis of a 32 residues chimeric microprotein inhibiting both trypsin and carboxypeptidase A. Biochem Biophys Res Commun 162:1425–1430

    Article  PubMed  CAS  Google Scholar 

  15. Hilpert K, Wessner H, Schneider-Mergener J, Welfle K, Misselwitz R, Welfle H et al (2003) Design and characterization of a hybrid miniprotein that specifically inhibits porcine pancreatic elastase. J Biol Chem 278:24986–24993

    Article  PubMed  CAS  Google Scholar 

  16. Sato S, Kamei K, Taniguchi M, Sato H, Takano R, Mori H et al (2000) Cloning and expression of the Momordica charantia trypsin inhibitor II gene in silkworm by using a baculovirus vector. Biosci Biotechnol Biochem 64:393–398

    Article  PubMed  CAS  Google Scholar 

  17. Grzesiak A, Buczek O, Petry I, Szewczuk Z, Otlewski J (2000) Inhibition of serine proteinases from human blood clotting system by squash inhibitor mutants. Biochim Biophys Acta 1478:318–324

    Article  PubMed  CAS  Google Scholar 

  18. Milner M, Chroboczek J, Zagorski-Ostoja W (2007) Engineered resistance against proteinases. Acta Biochim Pol 54:523–536

    PubMed  CAS  Google Scholar 

  19. Cemazar M, Daly NL, Haggblad S, Lo LP, Yulyaningsih E, Craik DJ (2006) Knots in rings. The circular knotted protein Momordica cochinchinensis trypsin inhibitor-II folds via a stable two-disulfide intermediate. J Biol Chem 281:8224–8232

    Article  PubMed  CAS  Google Scholar 

  20. Thongyoo P, Tate EW, Leatherbarrow RJ (2006) Total synthesis of the macrocyclic cysteine knot microprotein MCoTI-II. Chem Commun 27:2848–2850

    Google Scholar 

  21. Austin J, Wang W, Puttamadappa S, Shekhtman A, Camarero JA (2009) Biosynthesis and biological screening of a genetically-encoded library based on the cyclotide MCoTI-I. ChemBioChem 10:663–670

    Article  Google Scholar 

  22. Thongyoo P, Bonomelli C, Leatherbarrow RJ, Tate EW (2009) Potent Inhibitors of β-Tryptase and Human Leukocyte Elastase Based on the MCoTI-II Scaffold. J Med Chem 52:6197–00

    Article  PubMed  CAS  Google Scholar 

  23. Werle M, Kafedjiiski K, Kolmar H, Bernkop-Schnurch A (2007) Evaluation and improvement of the properties of the novel cystine-knot microprotein McoEeTI for oral administration. Int J Pharm 332:72–79

    Article  PubMed  CAS  Google Scholar 

  24. Greenwood KP, Daly NL, Brown DL, Stow JL, Craik DJ (2007) The cyclic cystine knot miniprotein MCoTI-II is internalized into cells by macropinocytosis. Int J Biochem Cell B 39:2252–2264

    Article  CAS  Google Scholar 

  25. Contreras J, Elnagar AZO, Hamm-Alvarez SF, Camarero JA (2011) Cellular uptake of cyclotide MCoTI-I follows multiple endocytic pathways. J Control Relase 155:134–143

    Article  CAS  Google Scholar 

  26. Cascales L, Henriques ST, Kerr MC, Huang Y-H, Sweet MJ, Daly NL et al (2011) Identification and characterization of a new family of cell-penetrating peptides. J Biol Chem 286:36932–36943

    Article  PubMed  CAS  Google Scholar 

  27. Korsinczky MLJ, Schirra HJ, Craik DJ (2004) Sunflower trypsin inhibitor-1. Curr Protein Pept Sci 5:351–364

    Article  PubMed  CAS  Google Scholar 

  28. Lesner A, Łęgowska A, Wysocka M, Rolka K (2011) Sunflower trypsin inhibitor 1 as a molecular scaffold for drug discovery. Curr Pharm Design 38:4308–4317

    Article  Google Scholar 

  29. Pereira HJV, Salgado MCO, Oliveira OB (2009) Immobilized analogues of sunflower trypsin inhibitor-1 constitute a versatile group of affinity sorbents for selective isolation of serine proteases. J Chrom B 877:2039–2044

    Article  CAS  Google Scholar 

  30. Marx UC, Korsinczky MJL, Schirra HJ, Jones A, Condie B, Otvos L et al (2003) Enzymatic cyclization of potent Bowman-Birk protease inhibitor, sunflower trypsin inhibitor-1, and solution structure of an acyclic precursor peptide. J Biol Chem 278:21782–21789

    Article  PubMed  CAS  Google Scholar 

  31. Colgrave ML, Korsinczky MJL, Clark RJ, Foley F, Craik DJ (2010) Sunflower trypsin inhibitor-1 proteolytic studies on a trypsin inhibitor peptide and its analogs. Biopolymers 94:665–672

    Article  PubMed  CAS  Google Scholar 

  32. Łęgowska A, Lesner A, Bulak E, Jaśkiewicz A, Sieradzan A, Cydzik M et al (2010) Inhibitory activity of double-sequence analogues of trypsin inhibitor SFTI-1 from sunflower seeds: an example of peptide splicing. FEBS J 277:2351–2359

    Article  PubMed  Google Scholar 

  33. Gillon AD, Saska I, Jennings CV, Guarino RF, Craik DJ, Anderson MA (2008) Biosynthesis of circular proteins in plants. Plant J 53:505–515

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Center under No. UMO-2011/01/B/ST5/03772.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krzysztof Rolka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Rolka, K., Lesner, A., Łęgowska, A., Wysocka, M. (2013). Peptidic Inhibitors of Serine Proteinases of Plant Origin. In: Fang, E., Ng, T. (eds) Antitumor Potential and other Emerging Medicinal Properties of Natural Compounds. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6214-5_12

Download citation

Publish with us

Policies and ethics