Apoptosis in higher multi-cellular organisms plays an important role in homeostasis, development and defence; however its significance in unicellular organisms remains unclear. Chlamydomonas reinhardtii, a unicellular green alga, has been shown to undergo apoptosis in response to UV-C irradiation (Kim et al. 1997; Moharikar et al. 2006). In order to understand the process of UV mediated apoptosis in C. reinhardtii, we undertook in silico global genome analysis and found a protein, which was identified as UVI31+, one amongst several UV inducible transcripts/proteins and a novel β-lactamase (Moharikar et al. 2006, Rout et al. 2010). UVI31+ protein is also endowed with endonuclease function, in vitro. Cell biological regulation reveals interesting localization changes of UVI31+ protein in Chlamydomonas reinhardtii chloroplast compartment (Shukla et al. 2012).
Chlamydomonas reinhardtii is about 10 μm in diameter that swims with two flagella. They have a cell wall made up of hydroxyproline-rich glycoproteins, a large cup-shaped chloroplast, a large pyrenoid, and an “eyespot” that senses light (Moharikar et al. 2006). It undergoes apoptosis in response to UV-C irradiation (Moharikar et al. 2007). It shows classical hall-marks of animal cell apoptosis and hence can be used as a model system for studying its molecular mechanism in a plant-like environment. Certain candidate molecules were recently identified as to be either UV-regulated or involved in apoptosis. They include apoptosis protease activating factor (APAF), a caspase-3 like protein and a defender against apoptotic death (dad1). All of them exhibited a distinct activation pattern correlating with onset of death following UV irradiation (Moharikar et al. 2006, 2007). One of the putative candidate molecules that is yet to be characterized is the aforementioned UV inducible gene, uvi31+, the focus of the present study.
Uvi31+ was originally isolated from Schizosaccharomyces pombe (Lee et al. 1994), whose expression was unaltered by other DNA damaging or cytotoxic agents. Interestingly, uvi31+ showed no significant sequence homology to the known DNA repair genes. It was observed that uvi31+ transcript increases during normal cell cycle in G1 phase before septation and also during diauxic shift (Kim et al. 1997). A null mutant of uvi31+ from S. pombe showed sensitivity to UV-light, defects in septation and cytokinesis during the resumption of cell division following UV damage-induced cell cycle arrest (Kim et al. 2002).
The uvi31+ protein has structural homology with the BolA protein of Escherichia coli, which was identified by its ability to induce round cell morphology when over-expressed in cells and also following a general stress response (Aldea et al. 1988; Santos et al. 1999; Huynen et al. 2005). Recently, it has been found that uvi31+ exhibited endonuclease activity (Shukla et al. 2012). However, uvi31+ has no structural homology with the known endonucleases. The mutation at S114A site at uvi31+ reduced its endonuclease activity as derived from biochemical analysis (yet to be published). And it has also been speculated that the Ser residue (S114) may be responsible for this activity. With this in the backdrop, we have mutated Ser114 to Ala114 and set out to structurally characterize the mutant of uvi31+ (named as S114Auvi31+) by NMR spectroscopy, to find out whether S114 is involved in endonuclese activity. Towards this goal, we report almost complete sequence specific 1H, 13C and 15N NMR assignments of S114A mutant of UVI31+.