Skip to main content

Advertisement

Log in

Current and future therapies of pediatric cardiopulmonary arrest

  • Symposium on Advances in Pediatric Intensive Care
  • Published:
The Indian Journal of Pediatrics Aims and scope Submit manuscript

Abstract

Objective

To review contemporary guidelines and therapies for pediatric cardiac arrest and discuss potential novel therapies.

Methods

Key articles and guidelines in the field were reviewed along with recent publications in the fields of neurointensive care and neuroscience germane to cerebral resuscitation.

Results

A total of 45 articles were reviewed. The majority of arrests in the pediatric population are asphyxial in origin-which differs importantly from the adult population. The International Consensus on CPR guidelines are discussed, including good quality CPR, chest compressions without interruptions, resuscitation with 100% oxygen and subsequent titration of oxygen to normal oxygen saturations, correct dose of epinephrine, and use of hypothermia in the first 12–24 hours. Novel therapies that showed success in animal studies, such as hypertensive reperfusion, thrombolytics, hemodilution and extracorporeal CPR are also discussed.

Conclusion

With only 30% return of spontaneous circulation, 12% survival to hospital discharge and 4% intact neurologic survival, pediatric cardiac arrest remains an area of intense research for therapies to improve its outcomes. In addition to the rapid implementation of basic and advanced life support interventions, new therapies that may have value include mild hypothermia, extracorporeal support, promotion of cerebral blood flow and other more novel therapies targeting oxidative stress, excitotoxicity, neuronal death, and rehabilitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zaritsky A, Nadkarni V, Hazinski MF et al. Recommended guidelines for uniform reporting of pediatric advanced life support: the Pediatric Utstein Style. A statement for healthcare professionals from a task force of the American Academy of Pediatrics, the American Heart Association, and the European Resuscitation Council. Resuscitation 1995; 30: 95–115.

    Article  PubMed  CAS  Google Scholar 

  2. Donoghue AJ, Nadkarni V, Berg RA et al. Out-of-hospital pediatric cardiac arrest: an epidemiologic review and assessment of current knowledge. Ann Emerg Med 2005; 46: 512–522.

    Article  PubMed  Google Scholar 

  3. Young KD, Seidel JS. Pediatric cardiopulmonary resuscitation: a collective review. Ann Emerg Med 1999; 33: 195–205.

    Article  PubMed  CAS  Google Scholar 

  4. Young KD, Gausche-Hill M, McClung CD, Lewis RJ. A prospective, population-based study of the epidemiology and outcome of out-of-hospital pediatric cardiopulmonary arrest. Pediatrics 2004; 114: 157–164.

    Article  PubMed  Google Scholar 

  5. Nadkarni VM, Larkin GL, Peberdy MA et al. First documented rhythm and clinical outcome from in-hospital cardiac arrest among children and adults. JAMA 2006; 295: 50–57.

    Article  PubMed  CAS  Google Scholar 

  6. Ronco R, King W, Donley DK, Tilden SJ. Outcome and cost at a children’s hospital following resuscitation for out-of-hospital cardiopulmonary arrest. Arch Pediatr Adolesc Med 1995; 149: 210–214.

    PubMed  CAS  Google Scholar 

  7. 2005 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science with Treatment Recommendations. Part 6: Paediatric basic and advanced life support. Resuscitation 2005; 67: 271–291.

  8. Herlitz J, Engdahl J, Svensson L, Young M, Angquist KA, Holmberg S. Characteristics and outcome among children suffering from out of hospital cardiac arrest in Sweden. Resuscitation 2005; 64: 37–40.

    Article  PubMed  CAS  Google Scholar 

  9. Kyriacou DN, Arcinue EL, Peek C, Kraus JF. Effect of immediate resuscitation on children with submersion injury. Pediatrics 1994; 94: 137–142.

    PubMed  CAS  Google Scholar 

  10. Hickey RW, Cohen DM, Strausbaugh S, Dietrich AM. Pediatric patients requiring CPR in the prehospital setting. Ann Emerg Med 1995; 25: 495–501.

    Article  PubMed  CAS  Google Scholar 

  11. Gausche M, Lewis RJ, Stratton SJ et al. Effect of out-of-hospital pediatric endotracheal intubation on survival and neurological outcome: a controlled clinical trial. JAMA 2000; 283: 783–790.

    Article  PubMed  CAS  Google Scholar 

  12. Khine HH, Corddry DH, Kettrick RG et al. Comparison of cuffed and uncuffed endotracheal tubes in young children during general anesthesia. Anesthesiology 1997; 86: 627–631; discussion 27A.

    Article  PubMed  CAS  Google Scholar 

  13. Park C, Bahk JH, Ahn WS, Do SH, Lee KH. The laryngeal mask airway in infants and children. Can J Anaesth 2001; 48: 413–417.

    Article  PubMed  CAS  Google Scholar 

  14. Zaritsky A. Endotracheal epinephrine in cardiac arrest. Crit Care Med 1994; 22: 1071–1072.

    Article  PubMed  CAS  Google Scholar 

  15. Perondi MB, Reis AG, Paiva EF, Nadkarni VM, Berg RA. A comparison of high-dose and standard-dose epinephrine in children with cardiac arrest. N Engl J Med 2004; 350: 1722–1730.

    Article  PubMed  CAS  Google Scholar 

  16. Richards EM, Fiskum G, Rosenthal RE, Hopkins I, McKenna MC. Hyperoxic reperfusion after global ischemia decreases hippocampal energy metabolism. Stroke 2007; 38: 1578–1584.

    Article  PubMed  Google Scholar 

  17. Liu Y, Rosenthal RE, Haywood Y, Miljkovic-Lolic M, Vanderhoek JY, Fiskum G. Normoxic ventilation after cardiac arrest reduces oxidation of brain lipids and improves neurological outcome. Stroke 1998; 29: 1679–1686.

    PubMed  CAS  Google Scholar 

  18. Zwemer CF, Whitesall SE, D’Alecy LG. Cardiopulmonarycerebral resuscitation with 100% oxygen exacerbates neurological dysfunction following nine minutes of normothermic cardiac arrest in dogs. Resuscitation 1994; 27: 159–170.

    Article  PubMed  CAS  Google Scholar 

  19. Balan IS, Fiskum G, Hazelton J, Cotto-Cumba C, Rosenthal RE. Oximetry-guided reoxygenation improves neurological outcome after experimental cardiac arrest. Stroke 2006; 37: 3008–3013.

    Article  PubMed  Google Scholar 

  20. Lipinski CA, Hicks SD, Callaway CW. Normoxic ventilation during resuscitation and outcome from asphyxial cardiac arrest in rats. Resuscitation 1999; 42: 221–229.

    Article  PubMed  CAS  Google Scholar 

  21. Ramji S, Rasaily R, Mishra PK et al. Resuscitation of asphyxiated newborns with room air or 100% oxygen at birth: a multicentric clinical trial. Indian Pediatr 2003; 40: 510–517.

    PubMed  CAS  Google Scholar 

  22. Saugstad OD, Rootwelt T, Aalen O. Resuscitation of asphyxiated newborn infants with room air or oxygen: an international controlled trial: the Resair 2 study. Pediatrics 1998; 102: e1.

    Article  PubMed  CAS  Google Scholar 

  23. Tan A, Schulze A, O’Donnell CP, Davis PG. Air versus oxygen for resuscitation of infants at birth. Cochrane Database Syst Rev 2004; 3: CD002273.

    Google Scholar 

  24. Davis PG, Tan A, O’Donnell CP, Schulze A. Resuscitation of newborn infants with 100% oxygen or air: a systematic review and meta-analysis. Lancet 2004; 364: 1329–1333.

    Article  PubMed  Google Scholar 

  25. Saugstad OD, Ramji S, Irani SF et al. Resuscitation of newborn infants with 21% or 100% oxygen: follow-up at 18 to 24 months. Pediatrics 2003; 112: 296–300.

    Article  PubMed  Google Scholar 

  26. Kochanek PM, Clark RS, Ruppel RA, Dixon CE. Cerebral resuscitation after traumatic brain injury and cardiopulmonary arrest in infants and children in the new millennium. Pediatr Clin North Am 2001; 48: 661–681.

    Article  PubMed  CAS  Google Scholar 

  27. Losek JD. Hypoglycemia and the ABC’s (sugar) of pediatric resuscitation. Ann Emerg Med 2000; 35: 43–46.

    Article  PubMed  CAS  Google Scholar 

  28. Srinivasan V, Spinella PC, Drott HR, Roth CL, Helfaer MA, Nadkarni V. Association of timing, duration, and intensity of hyperglycemia with intensive care unit mortality in critically ill children. Pediatr Crit Care Med 2004; 5: 329–336.

    Article  PubMed  Google Scholar 

  29. Ashwal S, Schneider S, Thompson J. Xenon computed tomography measuring cerebral blood flow in the determination of brain death in children. Ann Neurol 1989; 25: 539–546.

    Article  PubMed  CAS  Google Scholar 

  30. Safar P, Xiao F, Radovsky A et al. Improved cerebral resuscitation from cardiac arrest in dogs with mild hypothermia plus blood flow promotion. Stroke 1996; 27: 105–113.

    PubMed  CAS  Google Scholar 

  31. Sterz F, Zeiner A, Kurkciyan I et al. Mild resuscitative hypothermia and outcome after cardiopulmonary resuscitation. J Neurosurg Anesthesiol 1996; 8: 88–96.

    Article  PubMed  CAS  Google Scholar 

  32. Fischer M, Bottiger BW, Popov-Cenic S, Hossmann KA. Thrombolysis using plasminogen activator and heparin reduces cerebral no-reflow after resuscitation from cardiac arrest: an experimental study in the cat. Intensive Care Med 1996; 22: 1214–1223.

    Article  PubMed  CAS  Google Scholar 

  33. Bottiger BW, Bode C, Kern S et al. Efficacy and safety of thrombolytic therapy after initially unsuccessful cardiopulmonary resuscitation: a prospective clinical trial. Lancet 2001; 357: 1583–1585.

    Article  PubMed  CAS  Google Scholar 

  34. Fatovich DM, Dobb GJ, Clugston RA. A pilot randomised trial of thrombolysis in cardiac arrest (The TICA trial). Resuscitation 2004; 61: 309–313.

    Article  PubMed  Google Scholar 

  35. Spohr F, Arntz HR, Bluhmki E et al. International multicentre trial protocol to assess the efficacy and safety of tenecteplase during cardiopulmonary resuscitation in patients with out-of-hospital cardiac arrest: the Thrombolysis in Cardiac Arrest (TROICA) Study. Eur J Clin Invest 2005; 35: 315–323.

    Article  PubMed  CAS  Google Scholar 

  36. Hypothermia after Cardiac Arrest Study Group. Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N Engl J Med 2002; 346: 549–556.

    Article  Google Scholar 

  37. Hickey RW, Ferimer H, Alexander HL et al. Delayed, spontaneous hypothermia reduces neuronal damage after asphyxial cardiac arrest in rats. Crit Care Med 2000; 28: 3511–3516.

    Article  PubMed  CAS  Google Scholar 

  38. Fink EL, Marco CD, Donovan HA et al. Brief induced hypothermia improves outcome after asphyxial cardiopulmonary arrest in juvenile rats. Dev Neurosci 2005; 27: 191–199.

    Article  PubMed  CAS  Google Scholar 

  39. Ma D, Hossain M, Chow A et al. Xenon and hypothermia combine to provide neuroprotection from neonatal asphyxia. Ann Neurol 2005; 58: 182–193.

    Article  PubMed  CAS  Google Scholar 

  40. Haque IU, Latour MC, Zaritsky AL. Pediatric critical care community survey of knowledge and attitudes toward therapeutic hypothermia in comatose children after cardiac arrest. Pediatr Crit Care Med 2006; 7: 7–14.

    Article  PubMed  Google Scholar 

  41. Morris MC, Wernovsky G, Nadkarni VM. Survival outcomes after extracorporeal cardiopulmonary resuscitation instituted during active chest compressions following refractory in-hospital pediatric cardiac arrest. Pediatr Crit Care Med 2004; 5: 440–446.

    Article  PubMed  Google Scholar 

  42. Prins, ML. Cerebral metabolic adaptation and ketone metabolism after brain injury. J Cereb Blood Flow Metab 2007 Aug 8; [Epub ahead of print].

  43. Aarts MM, Tymianski M. TRPMs and neuronal death. Pflugers Arch-Eur J Physiol 2005; 451: 243–249.

    Article  CAS  Google Scholar 

  44. Fineman I, Giza CC, Nahed BV, Lee SM, Hovda DA. Inhibition of neocortical plasticity during development by a moderate concussive brain injury. J Neurotrauma 2000; 17: 739–749.

    PubMed  CAS  Google Scholar 

  45. Nozari A, Safar P, Stezoski SW et al. Critical time window for the induction of mild hypothermia during cardiopulmonary resuscitation from prolonged circulatory arrest in dogs. Circulation 2006; 113: 2690–2696.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mioara D. Manole.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manole, M.D., Hickey, R.W., Clark, R.S.B. et al. Current and future therapies of pediatric cardiopulmonary arrest. Indian J Pediatr 75, 609–614 (2008). https://doi.org/10.1007/s12098-008-0117-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12098-008-0117-3

Key words

Navigation