Skip to main content

New Strategies to Improve Outcome After Cardiac Arrest

  • Chapter
  • First Online:
Resuscitation

Abstract

Cerebral and myocardial lesions account for the majority of deaths or undesirable outcomes in survivors of cardiac arrest. The sum of symptoms presented by patients has been coined post-cardiac-arrest syndrome. While several drugs and devices have failed to significantly improve outcomes in the clinical setting, mild therapeutic hypothermia has been established as gold standard in post-arrest care in recent years. The question whether therapeutic hypothermia is beneficial in comatose survivors after cardiac arrest has been sufficiently resolved. However, it remains unclear when, who, and how to cool. Novel technical devices for targeted cerebral cooling have emerged in recent years and propose improvements in post-arrest care by starting therapeutic hypothermia during cardiopulmonary resuscitation. Furthermore do animal experiments suggest that several compounds such as Xenon, Argon, Hydrogen sulfide, Nitric oxide, or Erythropoietin might exert neuroprotective effects. Results from clinical as well as basic research show that implementing cardiocirculatory rather than cardio circulatory support with hemodynamic assist devices might result in a dramatic increase in the number of returns of spontaneous circulation as well as an improved myocardial recovery in certain settings. However, all of these novel approaches in post-arrest care still have to prove, in clinical trials, whether their promised benefits hold true in real life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Olasveengen TM, Sunde K, Brunborg C et al (2009) Intravenous drug administration during out-of-hospital cardiac arrest: a randomized trial. JAMA 302(20):2222–2229

    Article  PubMed  Google Scholar 

  2. Neumar RW, Nolan JP, Adrie C et al (2008) Post-cardiac arrest syndrome: epidemiology, pathophysiology, treatment, and prognostication. A consensus statement from the International Liaison Committee on Resuscitation (American Heart Association, Australian and New Zealand Council on Resuscitation, European Resuscitation Council, Heart and Stroke Foundation of Canada, Inter American Heart Foundation, Resuscitation Council of Asia, and the Resuscitation Council of Southern Africa); the American Heart Association Emergency Cardiovascular Care Committee; the Council on Cardiovascular Surgery and Anesthesia; the Council on Cardiopulmonary, Perioperative, and Critical Care; the Council on Clinical Cardiology; and the Stroke Council. Circulation 118(23):2452–2483

    Article  PubMed  Google Scholar 

  3. Woodhall B, Sealy WC, Hall KD et al (1960) Craniotomy under conditions of quinidine-protected cardioplegia and profound hypothermia. Ann Surg 152:37–44

    Article  PubMed  CAS  Google Scholar 

  4. Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest (2002). N Engl J Med 346(8):549–556

    Google Scholar 

  5. Bernard SA, Gray TW, Buist MD et al (2002) Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N Engl J Med 346(8):557–563

    Article  PubMed  Google Scholar 

  6. Bernard SA, Gray TW, Buist MD et al (2005) International consensus on cardiopulmonary resuscitation and emergency cardiovascular care science with treatment recommendations. Part 4: Advanced life support. Resuscitation 67(2–3):213–247

    Google Scholar 

  7. Peberdy MA, Callaway CW, Neumar RW et al (2010) Part 9: post-cardiac arrest care: 2010 American heart association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation 122(18 Suppl 3):S768–786

    Google Scholar 

  8. Ji X, Luo Y, Ling F et al (2007) Mild hypothermia diminishes oxidative DNA damage and pro-death signaling events after cerebral ischemia: a mechanism for neuroprotection. Front Biosci 12:1737–1747

    Article  PubMed  CAS  Google Scholar 

  9. Ooboshi H, Ibayashi S, Takano K et al (2000) Hypothermia inhibits ischemia-induced efflux of amino acids and neuronal damage in the hippocampus of aged rats. Brain Res 884(1–2):23–30

    Article  PubMed  CAS  Google Scholar 

  10. Zhao H, Yenari MA, Sapolsky RM et al (2004) Mild postischemic hypothermia prolongs the time window for gene therapy by inhibiting cytochrome C release. Stroke 35(2):572–577

    Article  PubMed  Google Scholar 

  11. Finley Caulfield A, Rachabattula S, Eyngorn I et al (2011) A comparison of cooling techniques to treat cardiac arrest patients with hypothermia. Stroke Res Treat 2011:690506

    Google Scholar 

  12. Tsai MS, Barbut D, Tang W et al (2008) Rapid head cooling initiated coincident with cardiopulmonary resuscitation improves success of defibrillation and post-resuscitation myocardial function in a porcine model of prolonged cardiac arrest. J Am Coll Cardiol 51(20):1988–1990

    Article  PubMed  Google Scholar 

  13. Castren M, Nordberg P, Svensson L et al (2011) Intra-arrest transnasal evaporative cooling: a randomized, prehospital, multicenter study (PRINCE: Pre-ROSC IntraNasal Cooling Effectiveness). Circulation 122(7):729–736

    Article  Google Scholar 

  14. Lipton P (1999) Ischemic cell death in brain neurons. Physiol Rev 79(4):1431–1568

    PubMed  CAS  Google Scholar 

  15. Derwall M, Timper A, Kottmann K et al (2008) Neuroprotective effects of the inhalational anesthetics isoflurane and xenon after cardiac arrest in pigs. Crit Care Med 36(11 Suppl):S492–S495

    Article  PubMed  Google Scholar 

  16. Fries M, Nolte KW, Coburn M et al (2008) Xenon reduces neuro histopathological damage and improves the early neurological deficit after cardiac arrest in pigs. Crit Care Med 36(8):2420–2426

    Article  PubMed  Google Scholar 

  17. Jawad N, Rizvi M, Gu J et al (2009) Neuroprotection (and lack of neuroprotection) afforded by a series of noble gases in an in vitro model of neuronal injury. Neurosci Lett 460(3):232–236

    Article  PubMed  CAS  Google Scholar 

  18. Loetscher PD, Rossaint J, Rossaint R et al (2009) Argon: neuroprotection in invitro models of cerebral ischemia and traumatic brain injury. Crit Care 13(6):R206

    Article  PubMed  Google Scholar 

  19. Hobbs C, Thoresen M, Tucker A et al (2008) Xenon and hypothermia combine additively, offering long-term functional and histopathologic neuroprotection after neonatal hypoxia/ischemia. Stroke 39(4):1307–1313

    Article  PubMed  Google Scholar 

  20. Derwall M, Coburn M, Rex S et al (2009) Xenon: recent developments and future perspectives. Minerva Anestesiol 75(1–2):37–45

    PubMed  CAS  Google Scholar 

  21. Franks NP, Dickinson R, de Sousa SL et al (1998) How does xenon produce anaesthesia? Nature 396(6709):324

    Article  PubMed  CAS  Google Scholar 

  22. Gruss M, Bushell TJ, Bright DP et al (2004) Two-pore-domain K + channels are a novel target for the anesthetic gases xenon, nitrous oxide, and cyclopropane. Mol Pharmacol 65(2):443–452

    Article  PubMed  CAS  Google Scholar 

  23. Coburn M, Maze M, Franks NP (2008) The neuroprotective effects of xenon and helium in an in vitro model of traumatic brain injury. Crit Care Med 36(2):588–595

    Article  PubMed  CAS  Google Scholar 

  24. David HN, Leveille F, Chazalviel L et al (2003) Reduction of ischemic brain damage by nitrous oxide and xenon. J Cereb Blood Flow Metab 23(10):1168–1173

    Article  PubMed  CAS  Google Scholar 

  25. Schmidt M, Marx T, Gloggl E et al (2005) Xenon attenuates cerebral damage after ischemia in pigs. Anesthesiology 102(5):929–936

    Article  PubMed  CAS  Google Scholar 

  26. Fries M, Coburn M, Nolte KW et al (2009) Early administration of xenon or isoflurane may not improve functional outcome and cerebral alterations in a porcine model of cardiac arrest. Resuscitation 80(5):584–590

    Article  PubMed  CAS  Google Scholar 

  27. Fries M, Brucken A, Cizen A et al (2012) Combining xenon and mild therapeutic hypothermia preserves neurological function after prolonged cardiac arrest in pigs. Crit Care Med 40(4):1297–1303

    Article  PubMed  CAS  Google Scholar 

  28. Chakkarapani E, Dingley J, Liu X et al (2010) Xenon enhances hypothermic neuroprotection in asphyxiated newborn pigs. Ann Neurol 68(3):330–341

    Article  PubMed  Google Scholar 

  29. Baumert JH, Hecker KE, Hein M et al (2005) Haemodynamic effects of haemorrhage during xenon anaesthesia in pigs. Br J Anaesth 94(6):727–732

    Article  PubMed  CAS  Google Scholar 

  30. Wappler F, Rossaint R, Baumert J et al (2007) Multicenter randomized comparison of xenon and isoflurane on left ventricular function in patients undergoing elective surgery. Anesthesiology 106(3):463–471

    Article  PubMed  CAS  Google Scholar 

  31. Rossaint R, Reyle-Hahn M, Schulte Am Esch J et al (2003) Multicenter randomized comparison of the efficacy and safety of xenon and isoflurane in patients undergoing elective surgery. Anesthesiology 98(1):6–13

    Google Scholar 

  32. David HN, Haelewyn B, Degoulet M et al (2012) Ex vivo and in vivo neuroprotection induced by argon when given after an excitotoxic or ischemic insult. PLoS One 7(2):e30934

    Google Scholar 

  33. Ryang YM, Fahlenkamp AV, Rossaint R et al (2012) Neuroprotective effects of argon in an in vivo model of transient middle cerebral artery occlusion in rats. Crit Care Med 39(6):1448–1453

    Google Scholar 

  34. Zhuang L YT, Zhao H, Fidalgo A, Vizcaychipi, Sanders R, Yu B, Takata M, Johnson M, Ma D (2012) The protective profile of argon, helium, and xenon in a model of neonatal asphyxia in rats. Crit Care Med 40(6):1724–1730

    Google Scholar 

  35. Brücken A, Cizen A, Fera C et al (2013) Argon reduces neurohistopathological damage and preserves functional recovery after cardiac arrest in rats. Br J Anaesth 110(Suppl 1):i106–i112

    Google Scholar 

  36. Abraini JH, Kriem B, Balon N et al (2003) Gamma-aminobutyric acid neuropharmacological investigations on narcosis produced by nitrogen, argon, or nitrous oxide. Anesth Analg 2003 96(3):746–749

    Google Scholar 

  37. Blackstone E, Morrison M, Roth MB (2005) H2S induces a suspended animation-like state in mice. Science 308(5721):518

    Article  PubMed  CAS  Google Scholar 

  38. Blackstone E, Roth MB (2007) Suspended animation-like state protects mice from lethal hypoxia. Shock 27(4):370–372

    Article  PubMed  CAS  Google Scholar 

  39. Derwall M, Westerkamp M, Lower C et al (2010) Hydrogen sulfide does not increase resuscitability in a porcine model of prolonged cardiac arrest. Shock 34(2):190–195

    Article  PubMed  CAS  Google Scholar 

  40. Nagasaka Y, Fernandez BO, Garcia-Saura MF et al (2008) Brief periods of nitric oxide inhalation protect against myocardial ischemia-reperfusion injury. Anesthesiology 109(4):675–682

    Article  PubMed  CAS  Google Scholar 

  41. Minamishima S, Kida K, Tokuda K et al (2011) Inhaled nitric oxide improves outcomes after successful cardiopulmonary resuscitation in mice. Circulation 124(15):1645–1653

    Article  PubMed  CAS  Google Scholar 

  42. Fiordaliso F, Chimenti S, Staszewsky L et al (2005) A nonerythropoietic derivative of erythropoietin protects the myocardium from ischemia-reperfusion injury. Proc Natl Acad Sci USA 102(6):2046–2051

    Article  PubMed  CAS  Google Scholar 

  43. Grmec S, Strnad M, Kupnik D et al (2009) Erythropoietin facilitates the return of spontaneous circulation and survival in victims of out-of-hospital cardiac arrest. Resuscitation 80(6):631–637

    Article  PubMed  CAS  Google Scholar 

  44. Chen YS, Lin JW, Yu HY et al (2008) Cardiopulmonary resuscitation with assisted extracorporeal life-support versus conventional cardiopulmonary resuscitation in adults with in-hospital cardiac arrest: an observational study and propensity analysis. Lancet 372(9638):554–561

    Article  PubMed  Google Scholar 

  45. Nolan JP, Soar J, Zideman DA et al (2010) European Resuscitation Council Guidelines for Resuscitation 2010 Section 1 Executive summary. Resuscitation 81(10):1219–1276

    Article  PubMed  Google Scholar 

  46. Keilegavlen H, Nordrehaug JE, Faerestrand S et al (2010) Treatment of cardiogenic shock with left ventricular assist device combined with cardiac resynchronization therapy: a case report. J Cardiothorac Surg 5:54

    Article  PubMed  Google Scholar 

  47. Manzo-Silberman S, Fichet J, Leprince P et al (2010) Cardiac arrest caused by coronary vasospasm treated with isosorbide dinitrate and left ventricular assistance. Resuscitation 81(7):919–920

    Article  PubMed  Google Scholar 

  48. Tuseth V, Pettersen RJ, Epstein A et al (2009) Percutaneous left ventricular assist device can prevent acute cerebral ischaemia during ventricular fibrillation. Resuscitation 80(10):1197–1203

    Article  PubMed  CAS  Google Scholar 

  49. Tuseth V, Pettersen RJ, Grong K et al (2010) Randomised comparison of percutaneous left ventricular assist device with open-chest cardiac massage and with surgical assist device during ischaemic cardiac arrest. Resuscitation 81(11):1566–1570

    Article  PubMed  CAS  Google Scholar 

  50. Tuseth V, Salem M, Pettersen R et al (2009) Percutaneous left ventricular assist in ischemic cardiac arrest. Crit Care Med 37(4):1365–1372

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Fries .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Italia

About this chapter

Cite this chapter

Derwall, M., Brücken, A., Fries, M. (2014). New Strategies to Improve Outcome After Cardiac Arrest. In: Gullo, A., Ristagno, G. (eds) Resuscitation. Springer, Milano. https://doi.org/10.1007/978-88-470-5507-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-5507-0_17

  • Published:

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-5506-3

  • Online ISBN: 978-88-470-5507-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics