Skip to main content
Log in

Inverse function is not component-wise uniform

  • Published:
Cryptography and Communications Aims and scope Submit manuscript

Abstract

Recently, Carlet introduced (Carlet Finite. Fields Appl. 53, 226–253 (2018)) the concept of component-wise uniform (CWU) functions which is a stronger notion than being almost perfect nonlinear (APN). Carlet showed that crooked functions (in particular quadratic functions, including Gold functions) and the compositional inverse of a specific Gold function are CWU. Carlet also compiled a table on the component-wise uniformity of APN power functions, where for the extension degrees less than 12, the APN power functions which are always CWU are Gold, the compositional inverse of the specific Gold function and Kasami. In this paper, we show that the Inverse function is not CWU if n > 5. We also show that any additive shift of a derivative of the Inverse function is not a cyclic difference set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bending, T.D., Fon-Der-Flaass, D.: Crooked functions, bent functions, and distance regular graphs, vol. 5. Research Paper 34 (1998)

  2. Berger, T.P., Canteaut, A., Charpin, P., Laigle-Chapuy, Y.: On almost perfect nonlinear functions over \({f^{n_{2}}}\). IEEE Trans. Inform. Theory 52(9), 4160–4170 (2006)

    Article  MathSciNet  Google Scholar 

  3. Carlet, C. Crama, Y., Hammer, P.L. (eds.): Vectorial Boolean Functions for Cryptography, vol. 134. Cambridge University Press, Cambridge (2010)

  4. Carlet, C.: Componentwise APNness, Walsh uniformity of APN functions, and cyclic-additive difference sets. Finite. Fields Appl. 53, 226–253 (2018). 10.1016/j.ffa.2018.06.007

    Article  MathSciNet  MATH  Google Scholar 

  5. Carlet, C.: On APN exponents, characterizations of differentially uniform functions by the Walsh transform, and related cyclic-difference-set-like structures. Des. Codes. Cryptogr. 87(2-3), 203–224 (2019). 10.1007/s10623-018-0512-3

    Article  MathSciNet  MATH  Google Scholar 

  6. Dillon, J.F., Dobbertin, H.: New cyclic difference sets with Singer parameters. Finite. Fields Appl. 10(3), 342–389 (2004). https://doi.org/10.1016/j.ffa.2003.09.003

    Article  MathSciNet  MATH  Google Scholar 

  7. Dobbertin, H.: Almost perfect nonlinear power functions on GF(2n): A new case for n divisible by 5. In: Jungnickel, D., Niederreiter, H. (eds.) Proceedings of the conference on Finite Fields and Applications, Augsburg, 1999, pp. 113–121, p 2001. Springer, Berlin (1999)

  8. Dobbertin, H.: Almost perfect nonlinear power functions on GF(2n): the Niho case. Inform. Comput. 151(1-2), 57–72 (1999)

    Article  MathSciNet  Google Scholar 

  9. Dobbertin, H.: Almost perfect nonlinear power functions on GF(2n): the Welch case. IEEE Trans. Inform. Theory 45(4), 1271–1275 (1999)

    Article  MathSciNet  Google Scholar 

  10. Gold, R.: Maximal recursive sequences with 3-valued recursive cross-correlation functions. IEEE Trans. Inf. Th. 14, 377–385 (1968)

    Article  Google Scholar 

  11. Golomb, S.W., Gong, G.: Signal Design for Good Correlation. Cambridge University Press, Cambridge (2005). For wireless communication, cryptography, and radar

    Book  Google Scholar 

  12. Helleseth, T., Zinoviev, V.: On Z4-linear Goethals codes and Kloosterman sums. Des. Codes Cryptogr. 17(1-3), 269–288 (1999). https://doi.org/10.1023/A:1026491513009

    Article  MathSciNet  MATH  Google Scholar 

  13. Kasami, T.: The weight enumerators for several classes of subcodes of the 2nd order binary reed-Muller codes. Inf. Control. 18, 369–394 (1971)

    Article  Google Scholar 

  14. Lachaud, G., Wolfmann, J.: The weights of the orthogonals of the extended quadratic binary Goppa codes. IEEE Trans. Inform. Theory 36(3), 686–692 (1990)

    Article  MathSciNet  Google Scholar 

  15. Lidl, R., Niederreiter, H.: Finite fields and their applications (1996). North-Holland, Amsterdam

    MATH  Google Scholar 

  16. Kyureghyan, G.M.: Crooked maps in \(\mathbb {F}_{2^{n}}\). Finite Fields Appl. 13(3), 713–726 (2007). https://doi.org/10.1016/j.ffa.2006.03.003

    Article  MathSciNet  Google Scholar 

  17. Lisoněk, P., Moisio, M.: On zeros of Kloosterman sums. Des. Codes Cryptogr. 59(1-3), 223–230 (2011). https://doi.org/10.1007/s10623-010-9457-x

    Article  MathSciNet  MATH  Google Scholar 

  18. Nyberg, K.: Differentially Uniform Mappings for Cryptography. In: Advances in Cryptology—EUROCRYPT ’93 (Lofthus, 1993), Lecture Notes in Comput. Sci., vol. 765, pp. 55–64. Springer, Berlin (1994)

Download references

Acknowledgements

The author would like to thank the Editor, Associate Editor and the Reviewers for very useful comments. This work was supported by the GAČR Grant 18-19087S - 301-13/201843.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faruk Göloğlu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Göloğlu, F. Inverse function is not component-wise uniform. Cryptogr. Commun. 12, 1179–1194 (2020). https://doi.org/10.1007/s12095-020-00441-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12095-020-00441-3

Keywords

Mathematics Subject Classification (2010)

Navigation