Skip to main content
Log in

On affine variety codes from the Klein quartic

  • Published:
Cryptography and Communications Aims and scope Submit manuscript

Abstract

We study a family of primary affine variety codes defined from the Klein quartic. The duals of these codes have previously been treated in Kolluru et al., (Appl. Algebra Engrg. Comm. Comput. 10(6):433–464, 2000, Ex. 3.2). Among the codes that we construct almost all have parameters as good as the best known codes according to Grassl (2007) and in the remaining few cases the parameters are almost as good. To establish the code parameters we apply the footprint bound (Geil and Høholdt, IEEE Trans. Inform. Theory 46(2), 635–641, 2000 and Høholdt 1998) from Gröbner basis theory and for this purpose we develop a new method where we inspired by Buchberger’s algorithm perform a series of symbolic computations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Cox, D.A., Little, J., O’Shea, D.: Ideals, varieties, and algorithms: An introduction to computational algebraic geometry and commutative algebra, volume Fourth Edition. Springer, Berlin (2015)

    Book  MATH  Google Scholar 

  2. Feng, G.L., Rao, T.R.N.: Decoding algebraic-geometric codes up to the designed minimum distance. IEEE Trans. Inform. Theory 39(1), 37–45 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  3. Feng, G.L., Rao, T.R.N.: A simple approach for construction of algebraic-geometric codes from affine plane curves. IEEE Trans. Inform. Theory 40(4), 1003–1012 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  4. Feng, G.L., Rao, T.R.N.: Improved geometric Goppa codes part I: Basic theory. IEEE Trans. Inform. Theory 41(6), 1678–1693 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  5. Fitzgerald, J., Lax, R.F.: Decoding affine variety codes using Gröbner bases. Des. Codes Cryptogr. 13(2), 147–158 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Geil, O.: Evaluation codes from an affine variety code perspective. In: Martínez-Moro, E., Munuera, C., Ruano, D. (eds.) Advances in algebraic geometry codes, volume 5 of Coding Theory and Cryptology, pages 153–180. World Scientific, Singapore (2008)

  7. Geil, O., Høholdt, T.: Footprints or generalized Bezout’s theorem. IEEE Trans. Inform. Theory 46(2), 635–641 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Geil, O., Martin, S.: An improvement of the Feng-Rao bound for primary codes. Des. Codes Crypt. 76(1), 49–79 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Geil, O., Özbudak, F.: Bounding the minimum distance of affine variety codes using symbollic computations of footprints. In: Barbero, A.I., Skachek, V., Ytrehus, Ø. (eds.) Coding Theory and Applications, Proceedings of 5th International Castle Meeting, ICMCTA 2017. Vihula, Estonia, Aug. 28–31, 2017, volume 10495 of Lecture Notes in Comput. Sci., pages 128–138. Springer (2017)

  10. Grassl, M.: Bounds on the minimum distance of linear codes and quantum codes. Online available at. Accessed on 2017-05-20 (2007). http://www.codetables.de

  11. Hansen, J.P.: Codes on the Klein Quartic, ideals and decoding. IEEE Trans. Inform. Theory 33(6), 923–925 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  12. Høholdt, T.: On (or in) Dick Blahut’s’ footprint’. Codes, Curves and Signals, pages 3–9 (1998)

  13. Høholdt, T., van Lint, J.H., Pellikaan, R.: Algebraic geometry codes. In: Pless, V.S., Huffman, W.C. (eds.) Handbook of Coding Theory, volume 1, pages 871–961. Elsevier, Amsterdam (1998)

  14. Kolluru, M.S., Feng, G.L., Rao, T.R.N.: Construction of improved geometric Goppa codes from Klein curves and Klein-like curves. Appl. Algebra Engrg. Comm. Comput. 10(6), 433–464 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Pellikaan, R.: The Klein quartic, the Fano plane and curves representing designs. In: Codes, Curves, and Signals, pages 9–20. Springer (1998)

  16. Salazar, G., Dunn, D., Graham, S.B.: An improvement of the Feng-Rao bound on minimum distance. Finite Fields Appl. 12, 313–335 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Department of Mathematical Sciences, Aalborg University for supporting a one-month visiting professor position for the second listed author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olav Geil.

Additional information

This article is part of the Topical Collection on Special Issue on Coding Theory and Applications

Supported from The Danish Council for Independent Research (Grant No. DFF–4002-00367), METU Coordinatorship of Scientific Research Projects via grant for projects BAP-01-01-2016-008 and BAP-07-05-2017-007.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geil, O., Özbudak, F. On affine variety codes from the Klein quartic. Cryptogr. Commun. 11, 237–257 (2019). https://doi.org/10.1007/s12095-018-0285-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12095-018-0285-6

Keywords

Navigation