Skip to main content
Log in

Reversed genetic algorithms for generation of bijective s-boxes with good cryptographic properties

  • Published:
Cryptography and Communications Aims and scope Submit manuscript

Abstract

Often the S-boxes are the only nonlinear components in a block cipher and as such play an important role in ensuring its resistance to cryptanalysis. Cryptographic properties and constructions of S-boxes have been studied for many years. The most common techniques for constructing S-boxes are: algebraic constructions, pseudo-random generation and a variety of heuristic approaches. Among the latter are the genetic algorithms. In this paper, a genetic algorithm working in a reversed way is proposed. Using the algorithm we can rapidly and repeatedly generate a large number of strong bijective S-boxes of each dimension from (8 × 8) to (16 × 16), which have sub-optimal properties close to the ones of S-boxes based on finite field inversion, but have more complex algebraic structure and possess no linear redundancy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. m of 255” in Table 1 means that m out of 255 S-box component Boolean functions belong to distinct extended affine equivalence classes

References

  1. Biham, E.: On Matsui’s linear cryptanalysis. In: Eurocrypt’94, volume 950 of LNCS, pp 341–355. Springer (1994)

  2. Biham, E.: Observations on the relations between bit-functions of many s-boxes. In: The 3rd NESSIE conference (2002)

  3. Biham, E., Shamir, A.: Differential cryptanalysis of des-like cryptosystems. In: Advances in Cryptology – CRYPTO’90, volume 537 of LNCS, pp 2–21. Springer Verlag (1991)

  4. Biham, E., Shamir, A.: Differential cryptanalysis of des-like cryptosystems. J. Cryptol. 4, 3–72 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  5. Browning, K., Dillon, J., McQuistan, M., Wolfe, A.: An apn permutation in dimension six. Finite Fields: Theory Appl. Contemp. Math. 518, 33–42 (2010)

    MathSciNet  MATH  Google Scholar 

  6. Carlet, C: Boolean Models and Methods in Mathematics, Computer Science, and Engineering, chapter Boolean Functions for Cryptography and Error Correcting Codes, pp 257–397. Cambridge University Press (2010)

  7. Carlet, C: Boolean Models and Methods in Mathematics, Computer Science, and Engineering, chapter Vectorial Boolean Functions for Cryptography, pp 257–397. Cambridge University Press (2010)

  8. Chabaud, F., Vaudenay, S.: Links between differential and linear cryptanalysis. In: Advances in Cryptology – EUROCRYPT’94, volume 950 of LNCS, pp 356–365. Springer Verlag (1995)

  9. Clark, J.A., Jacob, J.L., Stepney, S.: The design of s-boxes by simulated annealing. New Gener. Comput. Arch. 23(3) (2005)

  10. Courtois, N.T., Pieprzyk, J.: Cryptanalysis of block ciphers with overdefined systems of equations. In: Advances in Cryptology - ASIACRYPT’02, volume 2501 of LNCS, pp 267–287. Springer Verlag (2002)

  11. Daeman, J., Rijmen, V.: The design of Rijndael: AES – The advanced Encryption Standard. Springer Verlag (2002)

  12. Daemen, J., Govaerts, R., Vandewalle, J.: Correlation matrices. In: FSE’94, volume 1008 of LNCS, pp 275–285. Springer (1995)

  13. Fuller, J., Millan, W.: Linear redundancy in s-boxes. In: FSE’03, volume 2887 of LNCS, pp 74–86. Springer (2003)

  14. Gerard, B., Grosso, V., Naya-Plasencia, M., Standaert, F.-X.: Block ciphers that are easier to mask: How far can we go?. In: CHES’03, volume 8086 of LNCS, pp 383–399. Springer (2003)

  15. Golić, J. Dj.: Fast low order approximation of cryptographic functions. In: Advances in Cryptology – EUROCRYPT’96, volume 1070 of LNCS, pp 268–282. Springer Verlag (1996)

  16. Izbenko, Y., Kovtun, V., Kuznetsov, A.: The design of boolean functions by modified hill climbing method. http://eprint.iacr.org/2008/111.pdf,01.09.2013

  17. Kazymyrov, O., Kazymyrova, V., Oliynykov, R.: A method for generation of high-nonlinear s-boxes based on gradient descent. IACR Cryptology ePrint Archive (2013)

  18. Goubin, L., Martinelli, A., Walle, M.: Impact of s-boxes size upon side channel resistance and block cipher design. In: AFRICACRYPT’13, volume 7918 of LNCS, pp 240–259. Springer (2013)

  19. Matsui, M.: Linear cryptanalysis method for des cipher. In: Advances in Cryptology – EUROCRYPT’93, volume 765 of LNCS, pp 386–397. Springer Verlag (1994)

  20. McWilliams, F. J., NSloane, N.J.A.: The Theory of Error-Correcting Codes, North-Holland (1978)

  21. Meier, W., Staffelbach, O.: Nonlinearity criteria for cryptographic functions. In: Advances in Cryptology – EUROCRYPT’89, volume 434 of LNCS, pp 549–562. Springer Verlag (1990)

  22. Millan, W.: How to improve the nonlinearity of bijective s-boxes. In: Australian Conference on Information Security and Privacy 1998, vol. 1438, pp 181–192. Springer Verlag (1998)

  23. Millan, W., Burnett, L., Carter, G., Clark, A., Dawson, E.: Evolutionary heuristics for finding cryptographically strong s-boxes. In: ICICS’99, volume 1726 of LNCS, pp 263–274. Springer (1999)

  24. Millan, W. L.: Low order approximation of cipher functions. In: Cryptography: Policy and Algorithms Conference, Proceedings, volume 1029 of LNCS, pp 144–155. Springer Verlag (1996)

  25. Nyberg, K.: Perfect nonlinear s-boxes. In: Advances in Cryptology – EUROCRYPT’91, volume 547 of LNCS, pp 378–386. Springer Verlag (1992)

  26. Nyberg, K.: Differentially uniform mappings for cryptography. In: Advances in Cryptology – EUROCRYPT’93, volume 765 of LNCS, pp 55–64. Springer Verlag (1994)

  27. Preneel, B.: Analysis and Design of Cryptographic Hash Functions. PhD thesis, Catholic University of Leuven (1994)

  28. Qu, L., Tan, Y., Li, C., Gong, G.: More constructions of differentially 4-uniform permutations on \(\mathbb {F}_{2^{2k}}\). In: arXiv:http://arXiv.org/abs/arxiv.org/pdf/1309.7423 (2013)

  29. Qu, L., Tan, Y., Tan, C., Li, C.: Constructing differentially 4-uniform permutations over \(\mathbb {F}_{2^{2k}}\) via the switching method. IEEE Trans. Inform. Theory 59(7), 4675–4686 (2013)

    Article  MathSciNet  Google Scholar 

  30. Rothaus, O. S.: On bent functions. J. Comb. Theory 20(3), 300–305 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  31. Seberry, J., Zhang, X.M., Zheng, Y.: Systematic generation of cryptographically robust s-boxes. In: Proceedings of the first ACM Conference on Computer and Communications Security, pp 171–182. The Association for Computing Machinery, Fairfax, VA (1993)

  32. Seberry, J., Zhang, X. M., Zheng, Y.: Relationships among nonlinearity criteria. In: Advances in Cryptology – EUROCRYPT’94, volume 950 of LNCS, pp 376–388. Springer Verlag (1995)

  33. Shannon, C. E.: Communication theory of secrecy systems. Bell Syst. Tech. J. 28, 656–715 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  34. Tesař, P.: A new method for generating high non-linearity s-boxes. Radioengineering 19(1), 23–26 (2010)

    Google Scholar 

  35. Youssef, A.M., Tavares, S.E.: On some algebraic structures in the aes round function. Technical Report 2002/144, Cryptology ePrint Archive (2002)

  36. Yu, Y., Wang, M., Li, Y.: Constructing differential 4-uniform permutations from known ones. IACR Cryptology ePrint Archive (2011), Report 2011/047, http://eprint.iacr.org/2011/047.pdf

  37. Zhang, X., Zheng, Y., Imai, H.: Relating differential distribution tables to other properties of substitution boxes. Des., Codes Crypt. 19, 45–63 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svetla Nikova.

Additional information

The research is done as a part of the project “Finite geometries, coding theory and cryptography” between the Research Foundation - Flanders (FWO) and the Bulgarian Academy of Sciences. This research has been supported by the ICT COST Action IC1306 “Cryptography for Secure Digital Interaction”.

Appendices

Appendix A:

1.1 A.1 Genetic Algorithm 1 pseudo code

STEP 1:

(Initializing step) - defining the algorithm parameters

  • Define an integer n, representing the dimensions (n × n) of the bijective S-box.

  • Define an integer T, representing the number of S-boxes in the parent pool (P P).

  • Define an even integer N t h r N i n v , representing the nonlinearity threshold value.

  • Generate a number of T S-boxes of dimensions (n × n) and put them into the (P P). Some based on the inversion in the finite field G F(2n), while the other obtained in result of the application of affine transformations to the outputs of the former.

  • Create an empty offspring pool (O P) of size T.

  • Set the parents indexes t and r to be 1.

STEP 2:

(Breeding step)

figure a
STEP 3:

(Mutation step) C h 1 = m o d e l i n g(C h 1) and C h 2 = m o d e l i n g(C h 2) go to Step 4

STEP 4:

(Fitness step)

figure b
STEP 5:

(Solution pool)The number of all T desired S-boxes, having nonlinearity N = N t h r , are disposed in the offspring pool OP.

1.2 A.2 Genetic Algorithm 2 pseudo code

STEP 1:

(Initializing step) - defining the algorithm parameters

  • Define an integer n, representing the dimensions (n × n) of the bijective S-box.

  • Define an integer T, representing the number of S-boxes in the parent pool (P P).

  • Define an even integer N t h r N i n v , representing the nonlinearity threshold value.

  • Generate a number of T S-boxes of dimensions (n × n) and put them into the (P P). Some based on the inversion in the finite field G F(2n), while the other obtained in result of the application of affine transformations to the outputs of the former.

  • Create an empty offspring pool (O P) of size T.

  • Set the counter cnt value to be 0.

  • Set the parents indexes t and r to be 1.

STEP 2:

(Breeding step)

figure c
STEP 3:

(Mutation step)C h 1 = m o d e l i n g(C h 1) and C h 2 = m o d e l i n g(C h 2) go to Step 4

STEP 4:

(Fitness step)

figure d
STEP 5:

(Solution pool)The number of all T desired S-boxes, having nonlinearity N = N t h r , are disposed in the offspring pool OP.

1.3 A.3 Genetic Algorithm 3 pseudo code

STEP 1:

(Initializing step) - defining the algorithm parameters

  • Define an integer n, representing the dimensions (n × n) of the bijective S-box.

  • Define an integer T, representing the number of S-boxes in the parent pool (P P).

  • Define an even integer N t h r N i n v , representing the nonlinearity threshold value.

  • Define an even integer δ t h r δ i n v representing the δ-uniformity threshold value.

  • Generate a number of T S-boxes of dimensions (n × n) and put them into the (P P). Some based on the inversion in the finite field G F(2n), while the other obtained in result of the application of affine transformations to the outputs of the former.

  • Create an empty offspring pool (O P) of size T.

  • Set the counter cnt value to be 0.

  • Set the parents indexes t and r to be 1.

STEP 2:

(Breeding step)

figure e
STEP 3:

(Mutation step)C h 1 = m o d e l i n g(C h 1) and C h 2 = m o d e l i n g(C h 2) go to Step 4

STEP 4:

(Fitness step)

figure f
STEP 5:

(Solution pool)The number of all T desired S-boxes, having N = N t h r and δ = δ t h r (and at least one component Boolean function of nonlinearity greater than N i n v - for the case of the advanced version advGA3 only), are disposed in the offspring pool OP.

Appendix B: S-boxes generated with GA1

1.1 B.1 S-box No 1 (N S =104,d e g(S)=7,A C(S) m a x =64,δ = 6)

$$\begin{array}{@{}rcl@{}} &&\{0x52\ 0x53\ 0xDF\ 0xA4\ 0x99\ 0x00\ 0x29\ 0x83\ 0xBA\ 0x1D\ 0x7B\ 0x92\ 0xE2\ 0xB3\ 0xB7\ 0x95\\ &&0x26\ 0xE6\ 0xF8\ 0x19\ 0xCB\ 0x79\ 0x32\ 0x0D\ 0x0A\ 0x6D\ 0xAF\ 0x9E\ 0xAD\ 0x12\ 0xBC\ 0xE0\\ &&0x68\ 0x3C\ 0x08\ 0xA3\ 0x07\ 0x1F\ 0xFA\ 0x9B\ 0x93\ 0x58\ 0xCA\ 0x47\ 0x62\ 0x16\ 0xF0\ 0x90\\ &&0x7E\ 0x17\ 0xC0\ 0x3E\ 0xA1\ 0x6B\ 0x34\ 0x10\ 0xA0\ 0x67\ 0x72\ 0x3D\ 0x25\ 0xE9\ 0x0B\ 0x4B \\ &&0x4F\ 0xAC\ 0x65\ 0x35\ 0x7F\ 0x63\ 0xA7\ 0x3B\ 0xF5\ 0x36\ 0xF9\ 0x41\ 0x06\ 0x77\ 0xBB\ 0x5B\\ &&0xBF\ 0x0E\ 0x57\ 0x98\ 0x1E\ 0x76\ 0xD5\ 0xED\ 0x4A\ 0x6C\ 0x70\ 0xA2\ 0x03\ 0xBE\ 0x33\ 0x45\\ &&0x44\ 0x0C\ 0xFD\ 0x81\ 0x1B\ 0xF4\ 0x64\ 0x11\ 0xA6\ 0x15\ 0xC3\ 0x8D\ 0x61\ 0xC1\ 0x73\ 0x69\\ &&0x2B\ 0xE5\ 0xC5\ 0xD7\ 0x42\ 0xE7\ 0xE8\ 0x6E\ 0xE4\ 0x22\ 0x82\ 0x54\ 0xF3\ 0xA8\ 0xD3\ 0xD0\\ &&0xD1\ 0x2C\ 0x2D\ 0xD2\ 0xC4\ 0x21\ 0xEC\ 0x04\ 0xC9\ 0xCC\ 0xC7\ 0x8B\ 0xA5\ 0x50\ 0xEB\ 0xF6\\ &&0x8C\ 0x38\ 0x60\ 0x3F\ 0x8A\ 0xD8\ 0xD6\ 0x20\ 0x78\ 0x46\ 0xCD\ 0xDA\ 0xAB\ 0x8E\ 0xDB\ 0xC8\\ &&0xA9\ 0x2E\ 0x7C\ 0x91\ 0xDD\ 0xEA\ 0x37\ 0x1A\ 0x74\ 0x9A\ 0x40\ 0x18\ 0x9C\ 0xB5\ 0x80\ 0x30\\ &&0x5E\ 0xB2\ 0x4D\ 0xBD\ 0x43\ 0x27\ 0x2A\ 0x23\ 0xF7\ 0xDC\ 0x24\ 0x6F\ 0xEF\ 0xEE\ 0xD4\ 0x05\\ &&0x59\ 0x7A\ 0x7D\ 0xF1\ 0x88\ 0x86\ 0xB6\ 0x5D\ 0xFB\ 0x75\ 0x01\ 0x56\ 0x49\ 0xAE\ 0xFE\ 0xB4\\ &&0x28\ 0x55\ 0xFC\ 0x31\ 0x97\ 0x89\ 0xB0\ 0xB8\ 0xC6\ 0xD9\ 0x96\ 0x87\ 0xCF\ 0xAA\ 0xC2\ 0x39\\ &&0xE3\ 0x5F\ 0x84\ 0xB9\ 0x94\ 0x5C\ 0x9D\ 0xFF\ 0x5A\ 0x1C\ 0x85\ 0xB1\ 0x0F\ 0x02\ 0x4C\ 0xF2\\ &&0x4E\ 0x71\ 0x48\ 0x9F\ 0x14\ 0xCE\ 0x09\ 0x51\ 0x66\ 0xE1\ 0x6A\ 0x3A\ 0xDE\ 0x13\ 0x8F\ 0x2F\} \end{array} $$

1.2 B.2 S-box No 2 (N S =106,d e g(S)=6,A C(S) m a x =56,δ = 6)

$$\begin{array}{@{}rcl@{}} &&\{0x50\ 0x51\ 0x93\ 0xD2\ 0xF2\ 0x2E\ 0x11\ 0x0A\ 0x01\ 0x66\ 0x6F\ 0xFC\ 0xB3\ 0x38\ 0x7D\ 0x7A\\ &&0xBB\ 0xCB\ 0x4B\ 0x65\ 0x8C\ 0x4E\ 0x06\ 0xF5\ 0xE2\ 0x24\ 0x64\ 0x42\ 0x85\ 0x34\ 0x45\ 0x8D \\ &&0xE6\ 0x1B\ 0xDE\ 0xAB\ 0x9E\ 0xB9\ 0x89\ 0xF1\ 0x3E\ 0x8B\ 0x5F\ 0x7C\ 0x7B\ 0x5E\ 0xC1\ 0xA1 \\ &&0x09\ 0x87\ 0x6A\ 0xA4\ 0x4A\ 0x43\ 0x59\ 0x00\ 0xF9\ 0x33\ 0x62\ 0xA5\ 0x99\ 0x9C\ 0xFD\ 0x5A \\ &&0x0B\ 0x56\ 0xB6\ 0xA7\ 0x17\ 0xEF\ 0xEE\ 0x14\ 0x37\ 0x2B\ 0xE7\ 0x71\ 0xFF\ 0x03\ 0xC3\ 0xAF \\ &&0x67\ 0x58\ 0xFE\ 0x1D\ 0x94\ 0x81\ 0x46\ 0xF4\ 0x86\ 0x60\ 0x57\ 0x10\ 0xDB\ 0xCD\ 0xEB\ 0xDC \\ &&0xBF\ 0xD1\ 0xF8\ 0x69\ 0x4D\ 0x84\ 0x2A\ 0x18\ 0x5D\ 0xB2\ 0x9A\ 0xE0\ 0x97\ 0x8E\ 0x78\ 0x8A \\ &&0xC7\ 0x82\ 0xA2\ 0xD4\ 0x49\ 0xE3\ 0xE9\ 0xD7\ 0xF7\ 0xB4\ 0x36\ 0x19\ 0xC5\ 0xC9\ 0x55\ 0xF3 \\ &&0xBE\ 0x31\ 0x53\ 0x92\ 0x23\ 0xA3\ 0xE8\ 0x27\ 0xB0\ 0xA8\ 0xCC\ 0x0C\ 0x0F\ 0xEA\ 0x72\ 0xAA \\ &&0xA0\ 0x7E\ 0xAE\ 0x1E\ 0xC8\ 0x2C\ 0x83\ 0x20\ 0xC4\ 0x2D\ 0xBA\ 0x41\ 0xDA\ 0x0D\ 0xEC\ 0xBC \\ &&0x88\ 0x77\ 0x54\ 0x2F\ 0x07\ 0x47\ 0xB5\ 0x28\ 0x32\ 0x68\ 0xFB\ 0xFA\ 0x5B\ 0x6E\ 0x02\ 0x1C\\ &&0x3B\ 0x9B\ 0x48\ 0x25\ 0x90\ 0xAD\ 0x70\ 0x1A\ 0xD6\ 0x26\ 0xDD\ 0x0E\ 0xCE\ 0xBD\ 0x16\ 0x15 \end{array} $$
$$\begin{array}{@{}rcl@{}} &&0xE4\ 0xAC\ 0xD3\ 0x52\ 0x04\ 0x80\ 0x8F\ 0x3C\ 0x9D\ 0x6C\ 0x3A\ 0xE1\ 0x6D\ 0x98\ 0x74\ 0xB8 \\ &&0x95\ 0x05\ 0x21\ 0xC6\ 0x35\ 0x4C\ 0x08\ 0x61\ 0xF0\ 0x76\ 0x3F\ 0x79\ 0x44\ 0x4F\ 0x3D\ 0x96 \\ &&0xD8\ 0xA9\ 0x39\ 0x5C\ 0x29\ 0xF6\ 0x12\ 0xA6\ 0x9F\ 0x75\ 0xCA\ 0x40\ 0xCF\ 0xED\ 0xD0\ 0x30 \\ &&0xC0\ 0x7F\ 0x22\ 0xD5\ 0x63\ 0x6B\ 0xB7\ 0x13\ 0xC2\ 0xDF\ 0xE5\ 0x73\ 0xB1\ 0x91\ 0x1F\ 0xD9 \} \end{array} $$

1.3 B.3 S-box No 3 (N S =108,d e g(S)=6,A C(S) m a x =48,δ = 6)

$$\begin{array}{@{}rcl@{}} &&\{0x97\ 0x96\ 0x1A\ 0x26\ 0x1B\ 0x82\ 0xAB\ 0x01\ 0x38\ 0x9F\ 0xF9\ 0x10\ 0x60\ 0x31\ 0x35\ 0x17\\ &&0xA4\ 0x64\ 0x7A\ 0x9B\ 0x49\ 0xFB\ 0xB0\ 0x8F\ 0x88\ 0xEF\ 0x2D\ 0x1C\ 0x2F\ 0x90\ 0x3E\ 0x62\\ &&0xEA\ 0xBE\ 0x8A\ 0x21\ 0x85\ 0x9D\ 0x78\ 0x19\ 0x11\ 0xDA\ 0x48\ 0xC5\ 0xE0\ 0x94\ 0x72\ 0x12\\ &&0xFC\ 0x95\ 0x42\ 0xBC\ 0x23\ 0xE9\ 0xB6\ 0x92\ 0x22\ 0xE5\ 0xF0\ 0xBF\ 0xA7\ 0x6B\ 0x89\ 0xC9\\ &&0xCD\ 0x2E\ 0xE7\ 0xB7\ 0xFD\ 0xE1\ 0x25\ 0xB9\ 0x77\ 0xB4\ 0x7B\ 0xC3\ 0x84\ 0xF5\ 0x39\ 0xD9\\ &&0x3D\ 0x8C\ 0xD5\ 0xD1\ 0x9C\ 0xF4\ 0x57\ 0x6F\ 0xC8\ 0xEE\ 0xF2\ 0x20\ 0x81\ 0x3C\ 0xB1\ 0xC7\\ &&0xC6\ 0x8E\ 0x7F\ 0x03\ 0x99\ 0x76\ 0xE6\ 0x93\ 0x24\ 0x5D\ 0x41\ 0x0F\ 0xE3\ 0x43\ 0xF1\ 0xEB\\ &&0xA9\ 0x67\ 0x47\ 0x55\ 0xC0\ 0x65\ 0x6A\ 0xEC\ 0x66\ 0xA0\ 0x00\ 0xD6\ 0x71\ 0x2A\ 0x51\ 0x52\\ &&0x53\ 0xAE\ 0xAF\ 0x50\ 0x46\ 0xA3\ 0x6E\ 0x86\ 0x4B\ 0x4E\ 0x45\ 0x09\ 0x27\ 0xD2\ 0x69\ 0x74\\ &&0x0E\ 0xBA\ 0xE2\ 0xBD\ 0x08\ 0x5A\ 0x54\ 0xA2\ 0xFA\ 0xC4\ 0x4F\ 0x58\ 0x29\ 0x0C\ 0x59\ 0x4A\\ &&0x2B\ 0xAC\ 0xFE\ 0x13\ 0x5F\ 0x68\ 0xB5\ 0x98\ 0xF6\ 0x18\ 0xC2\ 0x9A\ 0x1E\ 0x37\ 0x02\ 0xB2\\ &&0xDC\ 0x30\ 0xCF\ 0x3F\ 0xC1\ 0xA5\ 0xA8\ 0xA1\ 0x75\ 0x5E\ 0xA6\ 0xED\ 0x6D\ 0x6C\ 0x56\ 0x87\\ &&0xDB\ 0xF8\ 0xFF\ 0x73\ 0x0A\ 0x04\ 0x34\ 0xDF\ 0x79\ 0xF7\ 0x83\ 0xD4\ 0xCB\ 0x2C\ 0x7C\ 0x36\\ &&0xAA\ 0xD7\ 0x7E\ 0xB3\ 0x15\ 0x0B\ 0x32\ 0x3A\ 0x44\ 0x5B\ 0x14\ 0x05\ 0x4D\ 0x28\ 0x40\ 0xBB\\ &&0x61\ 0xDD\ 0x06\ 0x3B\ 0x16\ 0xDE\ 0x1F\ 0x7D\ 0xD8\ 0x9E\ 0x07\ 0x33\ 0x8D\ 0x80\ 0xCE\ 0x63\\ &&0x8B\ 0xF3\ 0xE8\ 0xE4\ 0xB8\ 0xD0\ 0xD3\ 0x5C\ 0x0D\ 0x4C\ 0xAD\ 0x70\ 0x1D\ 0xCA\ 0x91\ 0xCC\} \end{array} $$

Appendix C: S-boxes generated with GA2

1.1 C.1 S-box No 1 (N S =106,d e g(S)=6,A C(S) m a x =48,δ = 6)

$$\begin{array}{@{}rcl@{}} &&\{0x82\ 0xD3\ 0x21\ 0x1F\ 0x95\ 0xDC\ 0x4E\ 0x86\ 0x5A\ 0x68\ 0x8D\ 0x47\ 0xC4\ 0x31\ 0xA0\ 0x5E\\ &&0xCE\ 0x20\ 0xD7\ 0xB6\ 0x56\ 0x2C\ 0x33\ 0x05\ 0x81\ 0x8F\ 0x08\ 0x32\ 0xB3\ 0x8A\ 0xCC\ 0x58\\ &&0x84\ 0x22\ 0xF3\ 0x5C\ 0x7B\ 0x1E\ 0xB8\ 0x6C\ 0xC8\ 0x71\ 0xF5\ 0x6F\ 0x09\ 0x04\ 0x12\ 0xC5\\ &&0x50\ 0xD4\ 0x57\ 0x0A\ 0xE7\ 0x78\ 0xFA\ 0x4D\ 0x49\ 0xB4\ 0xA6\ 0x97\ 0x85\ 0x3E\ 0xCF\ 0x0E\\ &&0xA1\ 0x10\ 0xF2\ 0x3C\ 0x69\ 0x17\ 0xCD\ 0x00\ 0x2D\ 0x0B\ 0xA2\ 0xDB\ 0xBF\ 0x67\ 0xD5\ 0x2F\\ &&0x87\ 0x19\ 0x28\ 0xFB\ 0x6A\ 0xB1\ 0x27\ 0xB5\ 0x14\ 0x8C\ 0xE1\ 0xD9\ 0xEA\ 0x9C\ 0x72\ 0x9F\\ &&0xCB\ 0xEE\ 0x89\ 0xA9\ 0x3B\ 0x83\ 0xE6\ 0x2A\ 0x63\ 0x93\ 0xDF\ 0xC1\ 0x9E\ 0x41\ 0x36\ 0xC9\\ &&0x34\ 0xF4\ 0xB9\ 0x38\ 0xB0\ 0x4B\ 0x5B\ 0x16\ 0x52\ 0xBE\ 0xFC\ 0x98\ 0x77\ 0x92\ 0xE4\ 0xAB\\ &&0x40\ 0x73\ 0xEB\ 0x42\ 0x9A\ 0x9B\ 0xFD\ 0x64\ 0x24\ 0xA7\ 0x1B\ 0xDD\ 0x76\ 0x62\ 0xE3\ 0xEC\\ &&0x06\ 0x80\ 0x15\ 0x46\ 0xB2\ 0x02\ 0x7D\ 0xA8\ 0x4F\ 0x18\ 0x23\ 0x3F\ 0x7A\ 0x3A\ 0x07\ 0x8E\\ &&0x53\ 0x66\ 0x1C\ 0xED\ 0xF7\ 0xD0\ 0x6D\ 0x39\ 0xD6\ 0x0C\ 0x48\ 0x26\ 0x03\ 0x8B\ 0x4A\ 0x6B\\ &&0xE9\ 0xF0\ 0xA5\ 0xC7\ 0x60\ 0xE5\ 0x7C\ 0x88\ 0x96\ 0x25\ 0xAD\ 0xC6\ 0xDA\ 0x55\ 0x5F\ 0x11 \end{array} $$
$$\begin{array}{@{}rcl@{}} &&0x75\ 0xC0\ 0x94\ 0x1A\ 0x54\ 0xA3\ 0x44\ 0xE0\ 0x0D\ 0xB7\ 0x51\ 0x2E\ 0x90\ 0xE2\ 0xF6\ 0xBA\\ &&0xBD\ 0x0F\ 0x59\ 0x01\ 0x7F\ 0xEF\ 0x70\ 0x37\ 0xAC\ 0xA4\ 0x30\ 0x13\ 0xF8\ 0xFE\ 0x74\ 0xDE\\ &&0xF9\ 0xC2\ 0x99\ 0x65\ 0x4C\ 0x29\ 0xFF\ 0xC3\ 0xBB\ 0xD1\ 0x35\ 0x6E\ 0x3D\ 0x5D\ 0xE8\ 0xAE\\ &&0xCA\ 0x7E\ 0xBC\ 0x1D\ 0x9D\ 0x43\ 0xAF\ 0xF1\ 0x2B\ 0x79\ 0xAA\ 0x61\ 0x91\ 0xD2\ 0x45\ 0xD8\} \end{array} $$

1.2 C.2 S-box No 2 (N S =110,d e g(S)=7,A C(S) m a x =40,δ = 6)

$$\begin{array}{@{}rcl@{}} &&\{0x1D\ 0x2B\ 0xD9\ 0x88\ 0xA0\ 0xE9\ 0x7B\ 0xB3\ 0x6F\ 0x5D\ 0xB8\ 0x72\ 0xF1\ 0x04\ 0x95\ 0x6B\\ &&0xFB\ 0x15\ 0xE2\ 0x83\ 0x63\ 0x19\ 0x06\ 0x30\ 0xB4\ 0xBA\ 0x3D\ 0x07\ 0x86\ 0xBF\ 0xF9\ 0x6D\\ &&0xB1\ 0x17\ 0xC6\ 0x69\ 0x4E\ 0xB7\ 0x8D\ 0x59\ 0xFD\ 0x44\ 0xC0\ 0x5A\ 0x3C\ 0x31\ 0x27\ 0xF0\\ &&0x65\ 0xE1\ 0x62\ 0x3F\ 0xD2\ 0x4D\ 0xCF\ 0x78\ 0x7C\ 0x81\ 0x93\ 0xA2\ 0xB0\ 0x0B\ 0xFA\ 0x3B\\ &&0x94\ 0x25\ 0xC7\ 0x09\ 0x5C\ 0x22\ 0xF8\ 0x35\ 0x18\ 0x3E\ 0x97\ 0xEE\ 0x8A\ 0x52\ 0xE0\ 0x1A\\ &&0xB2\ 0x2C\ 0xD5\ 0xCE\ 0x5F\ 0x84\ 0x12\ 0x80\ 0x21\ 0xB9\ 0xD4\ 0xEC\ 0xDF\ 0xA9\ 0x47\ 0xAA\\ &&0xFE\ 0xDB\ 0xBC\ 0x9C\ 0x0E\ 0xB6\ 0xD3\ 0x1F\ 0x56\ 0xA6\ 0xEA\ 0xF4\ 0x2A\ 0x74\ 0x03\ 0xFC\\ &&0x01\ 0xC1\ 0x8C\ 0x0D\ 0x85\ 0x7E\ 0x6E\ 0x23\ 0x67\ 0x8B\ 0xC9\ 0xAD\ 0x42\ 0xA7\ 0xD1\ 0x9E\\ &&0x75\ 0x46\ 0xDE\ 0x77\ 0xAF\ 0xAE\ 0xC8\ 0x51\ 0x11\ 0x92\ 0x2E\ 0xE8\ 0x43\ 0x57\ 0xD6\ 0xE6\\ &&0x33\ 0xB5\ 0x20\ 0x73\ 0x87\ 0x37\ 0x48\ 0x9D\ 0x7A\ 0x2D\ 0x16\ 0x0A\ 0x4F\ 0x0F\ 0x32\ 0xBB\\ &&0x66\ 0x53\ 0x29\ 0xD8\ 0xC2\ 0xE5\ 0x58\ 0x0C\ 0xE3\ 0x39\ 0x7D\ 0x13\ 0x36\ 0xBE\ 0x7F\ 0x5E\\ &&0xDC\ 0xC5\ 0x90\ 0xF2\ 0x55\ 0xD0\ 0x49\ 0xBD\ 0xA3\ 0x10\ 0x98\ 0xF3\ 0xEF\ 0x60\ 0x6A\ 0x24\\ &&0x40\ 0xF5\ 0xA1\ 0x2F\ 0x61\ 0x96\ 0x71\ 0xAB\ 0x38\ 0x82\ 0x64\ 0x1B\ 0xA5\ 0xD7\ 0xC3\ 0x8F\\ &&0x14\ 0x3A\ 0x6C\ 0x34\ 0x4A\ 0xDA\ 0x45\ 0x02\ 0x99\ 0x91\ 0x05\ 0x26\ 0xCD\ 0xCB\ 0x41\ 0xEB\\ &&0xCC\ 0xF7\ 0xAC\ 0x50\ 0x79\ 0x1C\ 0xCA\ 0xF6\ 0x8E\ 0xE4\ 0x00\ 0x5B\ 0x08\ 0x68\ 0xDD\ 0x9B\\ &&0xFF\ 0x4B\ 0x89\ 0x28\ 0xA8\ 0x76\ 0x9A\ 0xC4\ 0x1E\ 0x4C\ 0x9F\ 0x54\ 0xA4\ 0xE7\ 0x70\ 0xED\} \end{array} $$

1.3 C.3 S-box No 3 (N S =112,d e g(S)=7,A C(S) m a x =32,δ = 6)

$$\begin{array}{@{}rcl@{}} &&\{0x1E\ 0x2B\ 0xD9\ 0x88\ 0xA0\ 0xE9\ 0x7B\ 0xB3\ 0x6F\ 0x5D\ 0xB8\ 0x72\ 0xF1\ 0x04\ 0x95\ 0x6B\\ &&0xFB\ 0x15\ 0xE2\ 0x83\ 0x63\ 0x19\ 0x06\ 0x30\ 0xB4\ 0xBA\ 0x3D\ 0x07\ 0x86\ 0xBF\ 0xF9\ 0x6D\\ &&0xB1\ 0x17\ 0xC6\ 0x69\ 0x4E\ 0xB7\ 0x8D\ 0x59\ 0xFD\ 0x44\ 0xC0\ 0x5A\ 0x3C\ 0x31\ 0x27\ 0xF0\\ &&0x65\ 0xE1\ 0x62\ 0x3F\ 0xD2\ 0x4D\ 0xCF\ 0x78\ 0x7C\ 0x81\ 0x93\ 0xA2\ 0xB0\ 0x0B\ 0xFA\ 0x3B\\ &&0x94\ 0x25\ 0xC7\ 0x09\ 0x5C\ 0x22\ 0xF8\ 0x35\ 0x18\ 0x3E\ 0x97\ 0xEE\ 0x8A\ 0x52\ 0xE0\ 0x1A\\ &&0xB2\ 0x2C\ 0x1D\ 0xCE\ 0x5F\ 0x84\ 0x12\ 0x80\ 0x21\ 0xB9\ 0xD4\ 0xEC\ 0xDF\ 0xA9\ 0x47\ 0xAA\\ &&0xFE\ 0xDB\ 0xBC\ 0x9C\ 0x0E\ 0xB6\ 0xD3\ 0x1F\ 0x56\ 0xA6\ 0xEA\ 0xF4\ 0xAB\ 0x74\ 0x03\ 0xFC\\ &&0x01\ 0xC1\ 0x8C\ 0x0D\ 0x85\ 0x7E\ 0x6E\ 0x23\ 0x67\ 0x8B\ 0xC9\ 0xAD\ 0x42\ 0xA7\ 0xD1\ 0x9E\\ &&0x75\ 0x46\ 0xDE\ 0x77\ 0xAF\ 0xAE\ 0xC8\ 0x51\ 0x11\ 0x92\ 0x2E\ 0xE8\ 0x43\ 0x57\ 0xD6\ 0xE6\\ &&0x33\ 0xB5\ 0x20\ 0x73\ 0x87\ 0x37\ 0x48\ 0x9D\ 0x7A\ 0x2D\ 0x16\ 0x0A\ 0x4F\ 0x0F\ 0x32\ 0xBB\\ &&0x66\ 0x53\ 0x29\ 0xD8\ 0xC2\ 0xE5\ 0x58\ 0x0C\ 0xE3\ 0x39\ 0x7D\ 0x13\ 0x36\ 0xBE\ 0x7F\ 0x5E\\ &&0xDC\ 0xC5\ 0x90\ 0xF2\ 0x55\ 0xD0\ 0x49\ 0xBD\ 0xA3\ 0x10\ 0x98\ 0xF3\ 0xEF\ 0x60\ 0x6A\ 0x24 \end{array} $$
$$\begin{array}{@{}rcl@{}} &&0x40\ 0xF5\ 0xA1\ 0x2F\ 0x61\ 0x96\ 0x71\ 0xD5\ 0x38\ 0x82\ 0x64\ 0x1B\ 0xA5\ 0xD7\ 0xC3\ 0x8F\\ &&0x14\ 0x3A\ 0x6C\ 0x34\ 0x4A\ 0xDA\ 0x45\ 0x02\ 0x99\ 0x91\ 0x05\ 0x26\ 0xCD\ 0xCB\ 0x41\ 0xEB\\ &&0xCC\ 0xF7\ 0xAC\ 0x50\ 0x79\ 0x1C\ 0xCA\ 0xF6\ 0x8E\ 0xE4\ 0x00\ 0x5B\ 0x08\ 0x68\ 0xDD\ 0x9B\\ &&0xFF\ 0x4B\ 0x89\ 0x28\ 0xA8\ 0x76\ 0x9A\ 0xC4\ 0x2A\ 0x4C\ 0x9F\ 0x54\ 0xA4\ 0xE7\ 0x70\ 0xED\} \end{array} $$

Appendix D: S-boxes generated with GA3

1.1 D.1 S-box No 1: N S =104,d e g(S)=6,A C(S) m a x =56,δ = 6

$$\begin{array}{@{}rcl@{}} &&\{0x90\ 0xA5\ 0x57 \ 0x06 \ 0x2E \ 0x67 \ 0xF5 0x3D \ 0xE1 \ 0xD3 \ 0x36 \ 0xFC \ 0x7F \ 0x8A \ 0x1B \ 0xE5\\ &&0x75\ 0x9B \ 0x6C 0x0D\ 0xED \ 0x97 \ 0x88 \ 0xBE \ 0x3A \ 0x34 \ 0xB3 \ 0x89 \ 0x08 \ 0x31 \ 0x77 \ 0xE3\\ &&0x3F\ 0x99 \ 0x48 \ 0xE7 \ 0xC0 \ 0x39 \ 0x03 \ 0xD7 \ 0x73 \ 0xCA \ 0x4E \ 0xD4 \ 0xB2 \ 0xBF \ 0xA9 \ 0x7E\\ &&0xEB\ 0x6F \ 0xEC \ 0xB1 \ 0x5C \ 0xC3 \ 0x41 \ 0xF6 \ 0xF2 \ 0x0F \ 0x1D \ 0x2C \ 0x3E \ 0x85 \ 0x74 \ 0x5A\\ &&0x1A\ 0xAB \ 0x49 \ 0x87 \ 0xD2 \ 0xAC \ 0x76 \ 0xBB \ 0x96 \ 0xB0 \ 0x19 \ 0x60 \ 0x04 \ 0xDC \ 0x6E \ 0x94\\ &&0x3C\ 0xA2 \ 0x93 \ 0x40 \ 0xD1 \ 0x0A \ 0x9C \ 0x0E \ 0xAF \ 0x37 \ 0x11\ 0x62 \ 0x51 \ 0x27 \ 0xC9 \ 0x24\\ &&0x70\ 0x55 \ 0x32 \ 0x12 \ 0x80 \ 0x38 \ 0x5D \ 0x91 \ 0xD8 \ 0x28 \ 0x64 \ 0x7A \ 0x25 \ 0xFA \ 0x8D \ 0x72\\ &&0x8F\ 0x4F \ 0x02 \ 0x83 \ 0x0B \ 0xF0 \ 0xE0 \ 0xAD \ 0xE9 \ 0x05 \ 0x47 \ 0x23 \ 0xCC \ 0x29 \ 0x5F \ 0x10\\ &&0xFB\ 0xC8 \ 0x50 \ 0xF9 \ 0x21 \ 0x20 \ 0x46 \ 0xDF \ 0x9F \ 0x1C \ 0xA0 \ 0x66 \ 0xCD \ 0xD9 \ 0x58 \ 0x68\\ &&0xBD\ 0x3B \ 0xAE \ 0xFD \ 0x09 \ 0xB9 \ 0xC6 \ 0x13 \ 0xF4 \ 0xA3 \ 0x98 \ 0x84 \ 0xC1 \ 0x81\ 0xBC \ 0x35\\ &&0xE8\ 0xDD \ 0xA7 \ 0x56 \ 0x4C \ 0x6B \ 0xD6 \ 0x82 \ 0x6D \ 0xB7 \ 0xF3 \ 0x9D \ 0xB8 \ 0x30 \ 0xF1 \ 0xD0\\ &&0x52\ 0x4B \ 0x1E \ 0x7C \ 0xDB \ 0x5E \ 0xC7 \ 0x33 \ 0x2D \ 0x9E \ 0x16 \ 0x7D \ 0x61 \ 0xEE \ 0xE4 \ 0xAA\\ &&0xCE\ 0x7B \ 0x2F \ 0xA1 \ 0xEF \ 0x18 \ 0xFF \ 0x5B \ 0xB6 \ 0x0C \ 0xEA \ 0x95 \ 0x2B \ 0x59 \ 0x4D \ 0x01\\ &&0x9A\ 0xB4 \ 0xE2 \ 0xBA \ 0xC4 \ 0x54 \ 0xCB \ 0x8C \ 0x17 \ 0x1F \ 0x8B \ 0xA8 \ 0x43 \ 0x45 \ 0xCF \ 0x65\\ &&0x42\ 0x79 \ 0x22 \ 0xDE \ 0xF7 \ 0x92 \ 0x44 \ 0x78 \ 0x00 \ 0x6A \ 0x8E \ 0xD5 \ 0x86 \ 0xE6 \ 0x53 \ 0x15\\ &&0x71\ 0xC5 \ 0x07 \ 0xA6 \ 0x26 \ 0xF8 \ 0x14 \ 0x4A \ 0xB5 \ 0xA4 \ 0x2A \ 0x69 \ 0xDA \ 0xC2 \ 0x63 \ 0xFE\} \end{array} $$

1.2 D.2 S-box No 2: N S =106,d e g(S)=7,A C(S) m a x =48,δ = 4

$$\begin{array}{@{}rcl@{}} &&\{0xC1 \ 0xC0 \ 0xAA \ 0x63 \ 0x4B \ 0x02 \ 0x90 \ 0x58 \ 0x84 \ 0xB6 \ 0x53 \ 0x99 \ 0x1A\ 0xEF \ 0x7E \ 0x80\\ &&0x10 \ 0xFE \ 0x09 \ 0x68 \ 0x88 \ 0xF2 \ 0xED \ 0xDB \ 0x5F \ 0x51 \ 0xD6\ 0xEC \ 0x6D \ 0x54 \ 0x12 \ 0x86\\ &&0x2D \ 0xFC \ 0x5A \ 0x82 \ 0xA5 \ 0x5C \ 0x66 \ 0xB2 \ 0x16 \ 0xAF \ 0x2B \ 0xB1 \ 0xD7 \ 0xDA \ 0xCC \ 0x1B\\ &&0x8E \ 0x0A \ 0x89 \ 0xD4 \ 0x39 \ 0xA6 \ 0x24 \ 0x93 \ 0x97 \ 0x6A \ 0x78 \ 0x49 \ 0x5B \ 0xE0 \ 0x11 \ 0xD0\\ &&0x7F \ 0xCE \ 0x2C \ 0xE2 \ 0xB7 \ 0xC9 \ 0x13 \ 0xDE \ 0xF3 \ 0xD5 \ 0x7C \ 0x05 \ 0x61 \ 0xB9 \ 0x0B \ 0xF1\\ &&0x59 \ 0xC7 \ 0xF6 \ 0x25 \ 0xF9 \ 0x6F \ 0xB4 \ 0x6B \ 0xCA \ 0x52 \ 0x3F \ 0x07 \ 0x34 \ 0x42 \ 0xAC \ 0x41\\ &&0x15 \ 0x30 \ 0x57 \ 0x77 \ 0xE5 \ 0x5D \ 0x38 \ 0xF4 \ 0xBD \ 0x4D \ 0x01 \ 0x1F \ 0x40 \ 0x9F \ 0xE8 \ 0x17\\ &&0xEA \ 0x2A \ 0x67 \ 0xE6 \ 0x6E \ 0x95 \ 0x85 \ 0xC8 \ 0x8C \ 0x60 \ 0x22 \ 0x46 \ 0xA9 \ 0x4C \ 0x3A \ 0x75\\ &&0x9E \ 0xAD \ 0x35 \ 0x9C \ 0x44 \ 0x45 \ 0x23 \ 0xBA \ 0xFA \ 0x79 \ 0xC5 \ 0x03 \ 0xA8 \ 0xBC \ 0x3D \ 0x0D\\ &&0xD8 \ 0x5E \ 0xCB \ 0x98 \ 0x6C \ 0xDC \ 0xA3 \ 0x76 \ 0x91 \ 0xC6 \ 0xFD \ 0xE1 \ 0xA4 \ 0xE4 \ 0xD9 \ 0x50\\ &&0x8D \ 0xB8 \ 0xC2 \ 0x33 \ 0x29 \ 0x0E \ 0xB3 \ 0xE7 \ 0x08 \ 0xD2 \ 0x96 \ 0xF8 \ 0xDD \ 0x55 \ 0x94 \ 0xB5\\ &&0x37 \ 0x2E \ 0x7B \ 0x19 \ 0xBE \ 0x3B \ 0xA2 \ 0x56 \ 0x48 \ 0xFB \ 0x73 \ 0x18 \ 0x04 \ 0x8B \ 0x81 \ 0xCF \end{array} $$
$$\begin{array}{@{}rcl@{}} &&0xAB \ 0x1E \ 0x4A \ 0xC4 \ 0x8A \ 0x7D \ 0x9A \ 0x3E \ 0xD3 \ 0x69 \ 0x8F \ 0xF0 \ 0x4E \ 0x3C \ 0x28 \ 0x64\\ &&0xFF \ 0xD1 \ 0x87 \ 0xDF \ 0xA1 \ 0x31 \ 0xAE \ 0xE9 \ 0x72 \ 0x7A \ 0xEE \ 0xCD \ 0x26 \ 0x20 \ 0x32 \ 0x00\\ &&0x27 \ 0x1C \ 0x47 \ 0xBB \ 0x92 \ 0xF7 \ 0x21 \ 0x1D \ 0x65 \ 0x0F \ 0xEB \ 0xB0 \ 0xE3 \ 0x83 \ 0x36 \ 0x70\\ &&0x14 \ 0xA0 \ 0x62 \ 0xC3 \ 0x43 \ 0x9D \ 0x71 \ 0x2F \ 0xF5 \ 0xA7 \ 0x74 \ 0xBF \ 0x4F \ 0x0C \ 0x9B \ 0x06\} \end{array} $$

1.3 D.3 S-box No 3: N S =108,d e g(S)=7,A C(S) m a x =48,δ = 4

$$\begin{array}{@{}rcl@{}} &&\{0x3B \ 0x2B \ 0x90 \ 0xC1 \ 0xE9 \ 0xA0 \ 0x32 \ 0xFA \ 0x26 \ 0x14 \ 0xF1 \ 0x57 \ 0xB8 \ 0x4D \ 0xDC \ 0x22\\ &&0xB2 \ 0x5C \ 0xAB \ 0xCA \ 0x2A \ 0x50 \ 0x4F \ 0x79 \ 0xFD \ 0xF3 \ 0x74 \ 0x4E \ 0xCF \ 0xF6 \ 0xB0 \ 0x24\\ &&0xF8 \ 0x5E \ 0x8F \ 0x20 \ 0x07 \ 0xFE \ 0xC4 \ 0x10 \ 0xB4 \ 0x0D \ 0x89 \ 0x13 \ 0x75 \ 0x78 \ 0x6E \ 0xB9\\ &&0x2C \ 0xA8 \ 0x62 \ 0x76 \ 0x9B \ 0x04 \ 0x86 \ 0x31 \ 0x35 \ 0xC8 \ 0xDA \ 0xEB \ 0xF9 \ 0x42 \ 0xB3 \ 0x72\\ &&0xDD \ 0x6C \ 0x8E \ 0x40 \ 0x15 \ 0x6B \ 0xB1 \ 0x7C \ 0x51 \ 0x77 \ 0xDE \ 0xA7 \ 0xC3 \ 0x1B \ 0xA9 \ 0x53\\ &&0xFB \ 0x65 \ 0x54 \ 0x87 \ 0x16 \ 0xCD \ 0x5B \ 0xC9 \ 0x68 \ 0xF0 \ 0x9D \ 0xA5 \ 0x96 \ 0xE0 \ 0x0E \ 0xE3\\ &&0xB7 \ 0x92 \ 0xF5 \ 0xD5 \ 0x47 \ 0xFF \ 0x9A \ 0x56 \ 0x1F \ 0xEF \ 0xA3 \ 0xBD \ 0xE2 \ 0x3D \ 0x4A \ 0xB5\\ &&0x48 \ 0x88 \ 0xC5 \ 0x44 \ 0xCC \ 0x37 \ 0x27 \ 0x6A \ 0x2E \ 0xC2 \ 0x80 \ 0xE4 \ 0x0B \ 0xEE \ 0x98 \ 0xD7\\ &&0x3C \ 0x0F \ 0x97 \ 0x3E \ 0xE6 \ 0xE7 \ 0x81 \ 0x18 \ 0x58 \ 0xDB \ 0x67 \ 0xA1 \ 0x0A \ 0x1E \ 0x9F \ 0xAF\\ &&0x7A \ 0xFC \ 0x69 \ 0x3A \ 0xCE \ 0x7E \ 0x01 \ 0xD4 \ 0x33 \ 0x64 \ 0x5F \ 0x43 \ 0x06 \ 0x46 \ 0x7B \ 0xF2\\ &&0x2F \ 0x1A \ 0x60 \ 0x91 \ 0x8B \ 0xAC \ 0x11 \ 0x45 \ 0xAA \ 0x70 \ 0x34 \ 0x5A \ 0x7F \ 0xF7 \ 0x36 \ 0x17\\ &&0x95 \ 0x8C \ 0xD9 \ 0xBB \ 0x1C \ 0x99 \ 0x00 \ 0xF4 \ 0xEA \ 0x59 \ 0xD1 \ 0xBA \ 0xA6 \ 0x29 \ 0x23 \ 0x6D\\ &&0x09 \ 0xBC \ 0xE8 \ 0x66 \ 0x28 \ 0xDF \ 0x38 \ 0x9C \ 0x71 \ 0xCB \ 0x2D \ 0x52 \ 0xEC \ 0x9E \ 0x8A \ 0xC6\\ &&0x5D \ 0x73 \ 0x25 \ 0x7D \ 0x03 \ 0x93 \ 0x0C \ 0x4B \ 0xD0 \ 0xD8 \ 0x4C \ 0x6F \ 0x84 \ 0x82 \ 0x08 \ 0xA2\\ &&0x85 \ 0xBE \ 0xE5 \ 0x19 \ 0x30 \ 0x55 \ 0x83 \ 0xBF \ 0xC7 \ 0xAD \ 0x49 \ 0x12 \ 0x41 \ 0x21 \ 0x94 \ 0xD2\\ &&0xB6 \ 0x02 \ 0xC0 \ 0x61 \ 0xE1 \ 0x3F \ 0xD3 \ 0x8D \ 0x63 \ 0x05 \ 0xD6 \ 0x1D \ 0xED \ 0xAE \ 0x39 \ 0xA4\} \end{array} $$

1.4 D.4 S-box No 4: N S =110,d e g(S)=7,A C(S) m a x =40,δ = 4

$$\begin{array}{@{}rcl@{}} &&\{0x5C \ 0xC0 \ 0x32 \ 0x63 \ 0x4B \ 0x02 \ 0x90 \ 0x58 \ 0x84 \ 0xB6 \ 0x53 \ 0x99 \ 0x1A\ 0xEF \ 0x7E \ 0x80\\ &&0x10 \ 0xFE \ 0x09 \ 0x68 \ 0x88 \ 0xF2 \ 0xED \ 0xDB \ 0x5F \ 0x51 \ 0xD6\ 0xEC \ 0x6D \ 0x54 \ 0x12 \ 0x86\\ &&0x5A \ 0xFC \ 0x2D \ 0x82 \ 0xA5 \ 0xBD \ 0x66 \ 0xB2 \ 0x16\ 0xAF \ 0x2B \ 0xB1 \ 0xD7 \ 0xDA \ 0xCC \ 0x1B\\ &&0x8E \ 0x0A \ 0x89 \ 0xD4 \ 0x39 \ 0xA6 \ 0x24\ 0x93 \ 0x97 \ 0x6A \ 0x78 \ 0x49 \ 0x5B \ 0xE0 \ 0x11 \ 0xD0\\ &&0x7F \ 0xCE \ 0x2C \ 0xE2 \ 0xB7\ 0xC9 \ 0x13 \ 0xDE \ 0xF3 \ 0xD5 \ 0x7C \ 0x05 \ 0x61 \ 0xB9 \ 0x0B \ 0xF1\\ &&0x59 \ 0xC7 \ 0xC1\ 0x25 \ 0xB4 \ 0x6F \ 0xF9 \ 0x6B \ 0xCA \ 0x52 \ 0x3F \ 0x07 \ 0x34 \ 0x42 \ 0xAC \ 0x41\\ &&0x15\ 0x30 \ 0x57 \ 0x77 \ 0xE5 \ 0x5D \ 0x38 \ 0xF4 \ 0xF6 \ 0x4D \ 0x01 \ 0x1F \ 0x40 \ 0x9F \ 0xE8 \ 0x17\\ &&0xEA \ 0x2A \ 0x67 \ 0xE6 \ 0x6E \ 0x95 \ 0x85 \ 0xC8 \ 0x8C \ 0x60 \ 0x22 \ 0x46 \ 0xA9 \ 0x4C \ 0x3A \ 0x75\\ &&0x9E \ 0xAD \ 0x35 \ 0x9C \ 0x44 \ 0x45 \ 0x23 \ 0xBA \ 0xFA \ 0x79 \ 0xC5 \ 0x03 \ 0xA8 \ 0xBC \ 0x3D \ 0x0D\\ &&0xD8 \ 0x5E \ 0xCB \ 0x98 \ 0x6C \ 0xDC \ 0xA3 \ 0x76 \ 0x91 \ 0xC6 \ 0xFD \ 0xE1 \ 0xA4 \ 0xE4 \ 0xD9 \ 0x50\\ &&0x8D \ 0xB8 \ 0xC2 \ 0x33 \ 0x29 \ 0x0E \ 0xB3 \ 0xE7 \ 0x08 \ 0xD2 \ 0x96 \ 0xF8 \ 0xDD \ 0x55 \ 0x94 \ 0xB5 \end{array} $$
$$\begin{array}{@{}rcl@{}} &&0x37 \ 0x2E \ 0x7B \ 0x19 \ 0xBE \ 0x3B \ 0xA2 \ 0x56 \ 0x48 \ 0xFB \ 0x73 \ 0x18 \ 0x04 \ 0x8B \ 0x81 \ 0xCF\\ &&0xAB \ 0x1E \ 0x4A \ 0xC4 \ 0x8A \ 0x7D \ 0x9A \ 0x3E \ 0xD3 \ 0x69 \ 0x8F \ 0xF0 \ 0x4E \ 0x3C \ 0x28 \ 0x64\\ &&0xFF \ 0xD1 \ 0x87 \ 0xDF \ 0xA1 \ 0x31 \ 0xAE \ 0xE9 \ 0x72 \ 0x7A \ 0xEE \ 0xCD \ 0x26 \ 0x20 \ 0xAA \ 0x00\\ &&0x27 \ 0x1C \ 0x47 \ 0xBB \ 0x92 \ 0xF7 \ 0x21 \ 0x1D \ 0x65 \ 0x0F \ 0xEB \ 0xB0 \ 0xE3 \ 0x83 \ 0x36 \ 0x70\\ &&0x14 \ 0xA0 \ 0x62 \ 0xC3 \ 0x43 \ 0x9D \ 0x71 \ 0x2F \ 0xF5 \ 0xA7 \ 0x74 \ 0xBF \ 0x4F \ 0x0C \ 0x9B \ 0x06\} \end{array} $$

1.5 D.5 S-box No 5: N S =112,d e g(S)=7,A C(S) m a x =32,δ = 6

$$\begin{array}{@{}rcl@{}} &&\{0x2F \ 0xC0 \ 0x32 \ 0x63 \ 0x4B \ 0x02 \ 0x90 \ 0x58 \ 0x84 \ 0xB6 \ 0x53 \ 0x99 \ 0x1A\ 0xEF \ 0x7E \ 0x80\\ &&0x10 \ 0xFE \ 0x09 \ 0x68 \ 0x88 \ 0xF2 \ 0xED \ 0xDB \ 0x5F \ 0x51 \ 0xD6\ 0xEC \ 0x6D \ 0x54 \ 0x12 \ 0x86\\ &&0x5A \ 0xFC \ 0x2D \ 0x82 \ 0xA5 \ 0x5C \ 0x66 \ 0xB2 \ 0x16\ 0xAF \ 0x2B \ 0xB1 \ 0xD7 \ 0xDA \ 0xCC \ 0x1B\\ &&0x8E \ 0x0A \ 0x89 \ 0xD4 \ 0x39 \ 0xA6 \ 0x24\ 0x93 \ 0x97 \ 0x6A \ 0x78 \ 0x49 \ 0x5B \ 0xE0 \ 0x11 \ 0xD0\\ &&0x7F \ 0xCE \ 0x2C \ 0xE2 \ 0xB7\ 0xC9 \ 0x13 \ 0xDE \ 0xF3 \ 0xD5 \ 0x7C \ 0x05 \ 0x61 \ 0xB9 \ 0x0B \ 0xF1\\ &&0x59 \ 0xC7 \ 0xF6\ 0x25 \ 0xB4 \ 0x6F \ 0xF9 \ 0x6B \ 0xCA \ 0x52 \ 0x3F \ 0x07 \ 0x34 \ 0x42 \ 0xAC \ 0x41\\ &&0x15\ 0x30 \ 0x57 \ 0x77 \ 0xE5 \ 0x5D \ 0x38 \ 0xF4 \ 0xBD \ 0x4D \ 0x01 \ 0x1F \ 0x40 \ 0x9F \ 0xE8 \ 0x17\\ &&0xEA \ 0x2A \ 0x67 \ 0xE6 \ 0x6E \ 0x95 \ 0x85 \ 0xC8 \ 0x8C \ 0x60 \ 0x22 \ 0x46 \ 0xA9 \ 0x4C \ 0x3A \ 0x75\\ &&0x9E \ 0xAD \ 0x35 \ 0x9C \ 0x44 \ 0x45 \ 0x23 \ 0xBA \ 0xFA \ 0x79 \ 0xC5 \ 0x03 \ 0xA8 \ 0xBC \ 0x3D \ 0x0D\\ &&0xD8 \ 0x5E \ 0xCB \ 0x98 \ 0x6C \ 0xDC \ 0xA3 \ 0x76 \ 0x91 \ 0xC6 \ 0xFD \ 0xE1 \ 0xA4 \ 0xE4 \ 0xD9 \ 0x50\\ &&0x8D \ 0xB8 \ 0xC2 \ 0x33 \ 0x29 \ 0x0E \ 0xB3 \ 0xE7 \ 0x08 \ 0xD2 \ 0x96 \ 0xF8 \ 0xDD \ 0x55 \ 0x94 \ 0xB5\\ &&0x37 \ 0x2E \ 0x7B \ 0x19 \ 0xBE \ 0x3B \ 0xA2 \ 0x56 \ 0x48 \ 0xFB \ 0x73 \ 0x18 \ 0x04 \ 0x8B \ 0x81 \ 0xCF\\ &&0xAB \ 0x1E \ 0x4A \ 0xC4 \ 0x8A \ 0x7D \ 0x9A \ 0x3E \ 0xD3 \ 0x69 \ 0x8F \ 0xF0 \ 0x4E \ 0x3C \ 0x28 \ 0x64\\ &&0xFF \ 0xD1 \ 0x87 \ 0xDF \ 0xA1 \ 0x31 \ 0xAE \ 0xE9 \ 0x72 \ 0x7A \ 0xEE \ 0xCD \ 0x26 \ 0x20 \ 0xAA \ 0x00\\ &&0x27 \ 0x1C \ 0x47 \ 0xBB \ 0x92 \ 0xF7 \ 0x21 \ 0x1D \ 0x65 \ 0x0F \ 0xEB \ 0xB0 \ 0xE3 \ 0x83 \ 0x36 \ 0x70\\ &&0x14 \ 0xA0 \ 0x62 \ 0xC3 \ 0x43 \ 0x9D \ 0x71 \ 0xC1 \ 0xF5 \ 0xA7 \ 0x74 \ 0xBF \ 0x4F \ 0x0C \ 0x9B \ 0x06\} \end{array} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanov, G., Nikolov, N. & Nikova, S. Reversed genetic algorithms for generation of bijective s-boxes with good cryptographic properties. Cryptogr. Commun. 8, 247–276 (2016). https://doi.org/10.1007/s12095-015-0170-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12095-015-0170-5

Keywords

Mathematics Subject Classification (2010)

Navigation