Skip to main content
Log in

Second weight codewords of generalized Reed-Muller codes

  • Published:
Cryptography and Communications Aims and scope Submit manuscript

Abstract

Recently, the second weight of generalized Reed-Muller codes have been determined (Erickson 1974; Bruen 2010; Geil, Des. Codes Cryptogr. 48(3):323–330, 2008; Rolland, Cryptogr. Commun. 2(1):19–40, 2010). In this paper, we give the second weight codewords of the generalized Reed-Muller codes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Ballet, S., Rolland, Robert.: Remarks on low weight codewords of generalized affine and projective reed-muller codes. In: Proceedings of the International Workshop on Coding and Cryptography (2013)

  2. Berger, T., Charpin, P.: The automorphism group of generalized Reed-Muller codes. Discrete Math. 117(1–3), 1–17 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bruen, A.: Baer subplanes and blocking sets. Bull. Amer. Math. Soc. 76, 342–344 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bruen, A.: Blocking sets in finite projective planes. SIAM J. Appl. Math. 21, 380–392 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bruen, A.A.: Blocking sets and low-weight codewords in the generalized Reed-Muller codes. In: Error-Correcting Codes, Finite Geometries and Cryptography, Contemp. Math., vol. 523, pp. 161–164. Amer. Math. Soc., Providence, RI (2010)

    Chapter  Google Scholar 

  6. Cherdieu, J.P., Rolland, R.: On the number of points of some hypersurfaces in \({\bf F}^n_q\). Finite Fields Appl. 2(2), 214–224 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  7. Delsarte, P., Goethals, J.-M., MacWilliams, F.J.: On generalized Reed-Muller codes and their relatives. Inform. Control 16, 403–442 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  8. Erickson, D.E.: Mathematics california institute of technology. Division of Physics, and Astronomy. Counting Zeros of Polynomials Over Finite Fields. CIT theses. California Institute of Technology (1974)

  9. Geil, O.: On the second weight of generalized Reed-Muller codes. Des. Codes Cryptogr. 48(3), 323–330 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kasami, T., Lin, S., Wesley Peterson, W.: New generalizations of the Reed-Muller codes. I. Primitive codes. IEEE Trans. Inform. Theory IT-14, 189–199 (1968)

    Article  Google Scholar 

  11. Kasami, T., Tokura, N.: On the weight structure of Reed-Muller codes. IEEE Trans. Inform. Theory IT-16, 752–759 (1970)

    Article  MathSciNet  Google Scholar 

  12. Leducq, E.: A new proof of Delsarte, Goethals and Mac Williams theorem on minimal weight codewords of generalized Reed-Muller codes. Finite Fields Appl. 18(3), 581–586 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Rolland, R.: The second weight of generalized Reed-Muller codes in most cases. Cryptogr. Commun. 2(1), 19–40 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Sboui, A.: Second highest number of points of hypersurfaces in \({\mathbb F}_q^n\). Finite Fields Appl. 13(3), 444–449 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elodie Leducq.

Appendix: Blocking sets

Appendix: Blocking sets

Blocking sets have been studied by Erickson in [8] in the case of affine planes and by Bruen in [4, 3, 5] in the case of projective planes.

Definition 1

Let S be a subset of the affine space \({\mathbb{F}}_q^2\). We say that S is a blocking set of order n of \({\mathbb{F}}_q^2\) if for all line L in \({\mathbb{F}}_q^2\), #(S ∩ L) ≥ n and \(\#(({\mathbb{F}}_q^2\setminus S)\cap L)\geq n\).

Proposition 10

(Lemma 4.2 in [ 8 ]) Let q ≥ 3, 1 ≤ b ≤ q − 1 and f ∈ R q (b,2). If f has no linear factor and |f| ≤ (q − b + 1)(q − 1), then the support of f is a blocking set of order (q − b) of \({\mathbb{F}}_q^2\) .

In [8] Erickson make the following conjecture. It has been proved by Bruen in [5].

Theorem 13

(Conjecture 4.14 in [ 8 ]) If S is a blocking set of order n in \({\mathbb{F}}_q^2\) , then #S ≥ nq + q − n.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leducq, E. Second weight codewords of generalized Reed-Muller codes. Cryptogr. Commun. 5, 241–276 (2013). https://doi.org/10.1007/s12095-013-0084-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12095-013-0084-z

Keywords

Mathematics Subject Classifications (2010)

Navigation