Skip to main content
Log in

A simple combinatorial treatment of constructions and threshold gaps of ramp schemes

  • Published:
Cryptography and Communications Aims and scope Submit manuscript

Abstract

We give easy proofs of some recent results concerning threshold gaps in ramp schemes. We then generalise a construction method for ramp schemes employing error-correcting codes so that it can be applied using nonlinear (as well as linear) codes. Finally, as an immediate consequence of these results, we provide a new explicit bound on the minimum length of a code having a specified distance and dual distance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. After this paper was submitted for publication, Ronald Cramer informed us (private communication) that he also had a specialised proof of the combinatorial bound; this proof is presented in the updated version of [4].

References

  1. Bierbrauer, J.: Introduction to Coding Theory. Chapman & Hall/ CRC (2005)

  2. Blakley, G.R., Meadows, C.: Security of ramp schemes. Lect. Notes Comput. Sci. 196, 242–268 (1985) (CRYPTO 1984)

    Article  MathSciNet  Google Scholar 

  3. Blundo, C., De Santis, A., Vaccaro, U.: Efficient sharing of many secrets. Lect. Notes Comput. Sci. 665, 692–703 (1993) (STACS ’93)

    Article  Google Scholar 

  4. Cascudo, I., Cramer, R., Xing, C.: Bounds on the threshold gap in secret sharing over small fields. Cryptology ePrint Archive: Report 2012/319. http://eprint.iacr.org/2012/319 (2012) [Version 1 is dated June 5, 2012; version 2 is dated Sept. 27, 2012]

  5. Chen, H., Cramer, R.: Algebraic geometric secret sharing schemes and secure multi-party computations over small fields. Lect. Notes Comput. Sci. 4117, 521–536 (2006) (CRYPTO 2006)

    Article  MathSciNet  Google Scholar 

  6. Chen, H., Cramer, R., Goldwasser, S., de Haan, R., Vaikuntanathan, V.: Secure computation from random error correcting codes. Lect. Notes Comput. Sci. 4515, 291–310 (2007) (EUROCRYPT 2007)

    Article  Google Scholar 

  7. Dawson, E., Mahmoodian, E.S.: Orthogonal arrays and ordered threshold schemes. Australas. J. Comb. 8, 27–44 (1993)

    MathSciNet  MATH  Google Scholar 

  8. Delsarte, P.: An Algebraic Approach to the Association Schemes of Coding Theory. Philips Research Reports Supplements (1973)

  9. Delsarte, P.: Four fundamental parameters of a code and their combinatorial significance. Inf. Control 23, 407–438 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  10. Duursma, I., Chen, J.: Multiplicative secret sharing schemes from Reed–Muller type codes. In: 2012 IEEE International Symposium on Information Theory Proceedings, pp. 264–268

  11. Hedayat, A.S., Sloane, N.J.A., Stufken, J.: Orthogonal Arrays, Theory and Applications. Springer (1999)

  12. Jackson, W.-A., Martin, K.M.: A combinatorial interpretation of ramp schemes. Australas. J. Comb. 14, 51–60 (1996)

    MathSciNet  MATH  Google Scholar 

  13. Kohnert, A.: Construction of linear codes having prescribed primal-dual minimum distance with applications in cryptography. Albanian J. Math. 2, 221–227 (2008)

    MathSciNet  MATH  Google Scholar 

  14. Kurihara, J., Uyematsu, T., Matsumoto, R.: Secret sharing schemes based on linear codes can be precisely characterized by the relative generalized hamming weight. IEICE Trans. Fundam. E95-A(11), 2067–2075 (2012)

    Google Scholar 

  15. Kurosawa, K., Satoh, T.: Design of SAC/PC(ℓ) of order k boolean functions and three other cryptographic criteria. Lect. Notes Comput. Sci. 1233, 434–449 (1997) (EUROCRYPT 1997)

    Article  MathSciNet  Google Scholar 

  16. van Lint, J.H.: Introduction to Coding Theory, 3rd edn. Springer (1998)

  17. van Lint, J.H., Springer, T.A.: Generalized Reed–Solomon codes from algebraic geometry. IEEE Trans. Inf. Theory 33, 305–309 (1987)

    Article  MATH  Google Scholar 

  18. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North-Holland (1977)

  19. Martin, K.M., Paterson, M.B., Stinson, D.R.: Error decodable secret sharing and one-round perfectly secure message transmission for general adversary structures. Cryptogr. Commun. – Discrete Structures, Boolean Functions and Sequences 3, 65–86 (2011)

    Google Scholar 

  20. Massey, J.L.: Minimal codewords and secret sharing. In: Proceedings of the 6th Joint Swedish–Russian International Workshop on Information Theory, pp. 276–279 (1993)

  21. Matsumoto, R., Kurosawa, K., Itoh, T., Konno, T., Uyematsu, T.: Primal-dual distance bounds of linear codes with application to cryptography. IEEE Trans. Inf. Theory 52, 4251–4256 (2006)

    Article  MathSciNet  Google Scholar 

  22. McEliece, R.J., Sarwate, D.V.: On sharing secrets and Reed–Solomon codes. Commun. ACM 24, 583–584 (1981)

    Article  MathSciNet  Google Scholar 

  23. Ogata, W., Kurosawa, K.: Some basic properties of general nonperfect secret sharing schemes. J. Univers. Comput. Sci. 4, 690–704 (1998)

    MathSciNet  MATH  Google Scholar 

  24. Stinson, D.R., Wei, R.: An application of ramp schemes to broadcast encryption. Inf. Process. Lett. 69, 131–135 (1999)

    Article  MathSciNet  Google Scholar 

  25. Sudan, M.: Algorithmic introduction to coding theory. Lecture 21 (2001). http://people.csail.mit.edu/madhu/FT01/scribe/lect21.ps. Accessed 26 Sept 2012

Download references

Acknowledgements

We would like to thank Ignacio Cascudo, Ronald Cramer, Ryutaroh Matsumoto and Ruizhong Wei for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas R. Stinson.

Additional information

D. Stinson’s research is supported by NSERC discovery grant 203114-11.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paterson, M.B., Stinson, D.R. A simple combinatorial treatment of constructions and threshold gaps of ramp schemes . Cryptogr. Commun. 5, 229–240 (2013). https://doi.org/10.1007/s12095-013-0082-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12095-013-0082-1

Keywords

Navigation