Skip to main content

Advertisement

Log in

CircRNA-regulated glucose metabolism in ovarian cancer: an emerging landscape for therapeutic intervention

  • REVIEW ARTICLE
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Ovarian cancer (OC) has the highest mortality rate among female reproductive system tumours, with limited efficacy of traditional treatments and 5-year survival rates that rarely exceed 40%. Circular RNA (circRNA) is a stable endogenous circular RNA that typically regulates protein expression by binding to downstream miRNA. It has been demonstrated that circRNAs play an important role in the proliferation, migration, and glucose metabolism (such as the Warburg effect) of OC and can regulate the expression of glucose metabolism-related proteins such as GLUT1 and HK2, promoting anaerobic glycolysis of cancer cells, increasing glucose uptake and ATP production, and affecting energy supply and biosynthetic substances to support tumour growth and invasion. This review summarises the formation and characteristics of circRNAs and focuses on their role in regulating glucose metabolism in OC cells and their potential therapeutic value, providing insights for identifying new therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.

    Article  PubMed  Google Scholar 

  2. Wang Z, Guo E, Yang B, Xiao R, Lu F, You L, et al. Trends and age-period-cohort effects on mortality of the three major gynecologic cancers in China from 1990 to 2019: cervical, ovarian and uterine cancer. Gynecol Oncol. 2021;163(2):358–63.

    Article  PubMed  Google Scholar 

  3. Armstrong DK, Alvarez RD, Backes FJ, Bakkum-Gamez JN, Barroilhet L, Behbakht K, et al. NCCN guidelines® insights: Ovarian cancer version 3.2022. J Natl Compr Canc Netw. 2022;20(9):972–80.

    Article  PubMed  Google Scholar 

  4. Morand S, Devanaboyina M, Staats H, Stanbery L, Nemunaitis J. Ovarian cancer immunotherapy and personalized medicine. Int J Mol Sci. 2021;22(12):6532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. O’Malley DM. New therapies for ovarian cancer. J Natl Compr Canc Netw. 2019;17(5.5):619–21.

    CAS  PubMed  Google Scholar 

  6. Emmings E, Mullany S, Chang Z, Landen CN Jr, Linder S, Bazzaro M. Targeting mitochondria for treatment of chemoresistant ovarian cancer. Int J Mol Sci. 2019;20(1):229.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Koppenol WH, Bounds PL, Dang CV. Otto Warburg’s contributions to current concepts of cancer metabolism. Nat Rev Cancer. 2011;11(5):325–37.

    Article  CAS  PubMed  Google Scholar 

  8. Fukushi A, Kim HD, Chang YC, Kim CH. Revisited metabolic control and reprogramming cancers by means of the warburg effect in tumor cells. Int J Mol Sci. 2022;23(17):10037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Warburg O, Wind F, Negelein E. The metabolism of tumors in the body. J Gen Physiol. 1927;8(6):519–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Vaupel P, Schmidberger H, Mayer A. The Warburg effect: essential part of metabolic reprogramming and central contributor to cancer progression. Int J Radiat Biol. 2019;95(7):912–9.

    Article  CAS  PubMed  Google Scholar 

  11. Icard P, Shulman S, Farhat D, Steyaert JM, Alifano M, Lincet H. How the Warburg effect supports aggressiveness and drug resistance of cancer cells? Drug Resist Updat. 2018;38:1–11.

    Article  PubMed  Google Scholar 

  12. Apostolova P, Pearce EL. Lactic acid and lactate: revisiting the physiological roles in the tumor microenvironment. Trends Immunol. 2022;43(12):969–77.

    Article  CAS  PubMed  Google Scholar 

  13. Chelakkot C, Chelakkot VS, Shin Y, Song K. Modulating glycolysis to improve cancer therapy. Int J Mol Sci. 2023;24(3):2606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ohshima K, Morii E. Metabolic reprogramming of cancer cells during tumor progression and metastasis. Metabolites. 2021;11(1):28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Martínez-Reyes I, Chandel NS. Cancer metabolism: looking forward. Nat Rev Cancer. 2021;21(10):669–80.

    Article  PubMed  Google Scholar 

  16. Abdel-Wahab AF, Mahmoud W, Al-Harizy RM. Targeting glucose metabolism to suppress cancer progression: prospective of anti-glycolytic cancer therapy. Pharmacol Res. 2019;150: 104511.

    Article  CAS  PubMed  Google Scholar 

  17. Tondo-Steele K, McLean K. The “Sweet Spot” of targeting tumor metabolism in ovarian cancers. Cancers (Basel). 2022;14(19):4696.

    Article  CAS  PubMed  Google Scholar 

  18. Tekade RK, Sun X. The Warburg effect and glucose-derived cancer theranostics. Drug Discov Today. 2017;22(11):1637–53.

    Article  CAS  PubMed  Google Scholar 

  19. Yu CY, Kuo HC. The emerging roles and functions of circular RNAs and their generation. J Biomed Sci. 2019;26(1):29.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Zhang C, Liu N. Noncoding RNAs in the glycolysis of ovarian cancer. Front Pharmacol. 2022;13: 855488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yu T, Wang Y, Fan Y, Fang N, Wang T, Xu T, et al. CircRNAs in cancer metabolism: a review. J Hematol Oncol. 2019;12(1):90.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Nava GM, Madrigal Perez LA. Metabolic profile of the Warburg effect as a tool for molecular prognosis and diagnosis of cancer. Expert Rev Mol Diagn. 2022;22(4):439–47.

    Article  CAS  PubMed  Google Scholar 

  23. Meng S, Zhou H, Feng Z, Xu Z, Tang Y, Li P, et al. CircRNA: functions and properties of a novel potential biomarker for cancer. Mol Cancer. 2017;16(1):94.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Li Z, Zhang H. Reprogramming of glucose, fatty acid and amino acid metabolism for cancer progression. Cell Mol Life Sci. 2016;73(2):377–92.

    Article  CAS  PubMed  Google Scholar 

  25. Greene J, Segaran A, Lord S. Targeting OXPHOS and the electron transport chain in cancer; molecular and therapeutic implications. Semin Cancer Biol. 2022;86(Pt 2):851–9.

    Article  CAS  PubMed  Google Scholar 

  26. Morita M, Sato T, Nomura M, Sakamoto Y, Inoue Y, Tanaka R, et al. PKM1 Confers metabolic advantages and promotes cell-autonomous tumor cell growth. Cancer Cell. 2018;33(3):355-367.e7.

    Article  CAS  PubMed  Google Scholar 

  27. Israelsen WJ, Vander Heiden MG. Pyruvate kinase: function, regulation and role in cancer. Semin Cell Dev Biol. 2015;43(43):51.

    Google Scholar 

  28. İlhan M. Non-metabolic functions of pyruvate kinase M2: PKM2 in tumorigenesis and therapy resistance. Neoplasma. 2022;69(4):747–54.

    Article  PubMed  Google Scholar 

  29. Eniafe J, Jiang S. The functional roles of TCA cycle metabolites in cancer. Oncogene. 2021;40(19):3351–63.

    Article  CAS  PubMed  Google Scholar 

  30. Dier U, Shin DH, Hemachandra LP, Uusitalo LM, Hempel N. Bioenergetic analysis of ovarian cancer cell lines: profiling of histological subtypes and identification of a mitochondria-defective cell line. PLoS ONE. 2014;9(5): e98479.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  31. Li N, Zhan X, Zhan X. The lncRNA SNHG3 regulates energy metabolism of ovarian cancer by an analysis of mitochondrial proteomes. Gynecol Oncol. 2018;150(2):343–54.

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  32. Anderson AS, Roberts PC, Frisard MI, McMillan RP, Brown TJ, Lawless MH, et al. Metabolic changes during ovarian cancer progression as targets for sphingosine treatment. Exp Cell Res. 2013;319(10):1431–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Xintaropoulou C, Ward C, Wise A, Queckborner S, Turnbull A, Michie CO, et al. Expression of glycolytic enzymes in ovarian cancers and evaluation of the glycolytic pathway as a strategy for ovarian cancer treatment. BMC Cancer. 2018;18(1):636.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ma Y, Wang W, Idowu MO, Oh U, Wang XY, Temkin SM, et al. Ovarian cancer relies on glucose transporter 1 to fuel glycolysis and growth: anti-tumor activity of BAY-876. Cancers (Basel). 2018;11(1):33.

    Article  PubMed  Google Scholar 

  35. Baczewska M, Supruniuk E, Bojczuk K, Guzik P, Milewska P, Konończuk K, et al. Energy Substrate transporters in high-grade ovarian cancer: gene expression and clinical implications. Int J Mol Sci. 2022;23(16):8968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ciscato F, Ferrone L, Masgras I, Laquatra C, Rasola A. Hexokinase 2 in cancer: A prima donna playing multiple characters. Int J Mol Sci. 2021;22(9):4716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tian X, Liu D, Zuo X, Sun X, Wu M, Li X, et al. Hexokinase 2 promoted cell motility and proliferation by activating Akt1/p-Akt1 in human ovarian cancer cells. J Ovarian Res. 2022;15(1):92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Suh DH, Kim MA, Kim H, Kim MK, Kim HS, Chung HH, et al. Association of overexpression of hexokinase II with chemoresistance in epithelial ovarian cancer. Clin Exp Med. 2014;14(3):345–53.

    Article  CAS  PubMed  Google Scholar 

  39. Garcia SN, Guedes RC, Marques MM. Unlocking the potential of HK2 in cancer metabolism and therapeutics. Curr Med Chem. 2019;26(41):7285–322.

    Article  CAS  PubMed  Google Scholar 

  40. Feng J, Li J, Wu L, Yu Q, Ji J, Wu J, et al. Emerging roles and the regulation of aerobic glycolysis in hepatocellular carcinoma. J Exp Clin Cancer Res. 2020;39(1):126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lincet H, Kafara P, Giffard F, Abeilard-Lemoisson E, Duval M, Louis MH, et al. Inhibition of Mcl-1 expression by citrate enhances the effect of Bcl-xL inhibitors on human ovarian carcinoma cells. J Ovarian Res. 2013;6(1):72.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kruspig B, Nilchian A, Orrenius S, Zhivotovsky B, Gogvadze V. Citrate kills tumor cells through activation of apical caspases. Cell Mol Life Sci. 2012;69(24):4229–37.

    Article  CAS  PubMed  Google Scholar 

  43. Wang X, Yin Y, Qian W, Peng C, Shen S, Wang T, et al. Citric acid of ovarian cancer metabolite induces pyroptosis via the caspase-4/TXNIP-NLRP3-GSDMD pathway in ovarian cancer. Faseb j. 2022;36(6): e22362.

    Article  CAS  PubMed  Google Scholar 

  44. Kopinski PK, Singh LN, Zhang S, Lott MT, Wallace DC. Mitochondrial DNA variation and cancer. Nat Rev Cancer. 2021;21(7):431–45.

    Article  CAS  PubMed  Google Scholar 

  45. Ju HQ, Lin JF, Tian T, Xie D, Xu RH. NADPH homeostasis in cancer: functions, mechanisms and therapeutic implications. Signal Transduct Target Ther. 2020;5(1):231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yang Y, Sauve AA. NAD(+) metabolism: Bioenergetics, signaling and manipulation for therapy. Biochim Biophys Acta. 2016;1864(12):1787–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pramono AA, Rather GM, Herman H, Lestari K, Bertino JR. NAD- and NADPH-contributing enzymes as therapeutic targets in cancer: an overview. Biomolecules. 2020;10(3):358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. San-Millán I, Brooks GA. Reexamining cancer metabolism: lactate production for carcinogenesis could be the purpose and explanation of the Warburg effect. Carcinogenesis. 2017;38(2):119–33.

    PubMed  Google Scholar 

  49. Zhang Y, Zhai Z, Duan J, Wang X, Zhong J, Wu L, et al. Lactate: the mediator of metabolism and immunosuppression. Front Endocrinol (Lausanne). 2022;13: 901495.

    Article  PubMed  Google Scholar 

  50. Stern R, Shuster S, Neudecker BA, Formby B. Lactate stimulates fibroblast expression of hyaluronan and CD44: the Warburg effect revisited. Exp Cell Res. 2002;276(1):24–31.

    Article  CAS  PubMed  Google Scholar 

  51. Ding J, Karp JE, Emadi A. Elevated lactate dehydrogenase (LDH) can be a marker of immune suppression in cancer: Interplay between hematologic and solid neoplastic clones and their microenvironments. Cancer Biomark. 2017;19(4):353–63.

    Article  CAS  PubMed  Google Scholar 

  52. Zhao J, Huang X, Xu Z, Dai J, He H, Zhu Y, et al. LDHA promotes tumor metastasis by facilitating epithelial-mesenchymal transition in renal cell carcinoma. Mol Med Rep. 2017;16(6):8335–44.

    Article  CAS  PubMed  Google Scholar 

  53. Liu M, Quek LE, Sultani G, Turner N. Epithelial-mesenchymal transition induction is associated with augmented glucose uptake and lactate production in pancreatic ductal adenocarcinoma. Cancer Metab. 2016;4:19.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Ghafouri-Fard S, Khoshbakht T, Hussen BM, Taheri M, Samsami M. Emerging role of circular RNAs in the pathogenesis of ovarian cancer. Cancer Cell Int. 2022;22(1):172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kristensen LS, Jakobsen T, Hager H, Kjems J. The emerging roles of circRNAs in cancer and oncology. Nat Rev Clin Oncol. 2022;19(3):188–206.

    Article  CAS  PubMed  Google Scholar 

  56. Hsu MT, Coca-Prados M. Electron microscopic evidence for the circular form of RNA in the cytoplasm of eukaryotic cells. Nature. 1979;280(5720):339–40.

    Article  ADS  CAS  PubMed  Google Scholar 

  57. Guo JU, Agarwal V, Guo H, Bartel DP. Expanded identification and characterization of mammalian circular RNAs. Genome Biol. 2014;15(7):409.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Ashwal-Fluss R, Meyer M, Pamudurti NR, Ivanov A, Bartok O, Hanan M, et al. circRNA biogenesis competes with pre-mRNA splicing. Mol Cell. 2014;56(1):55–66.

    Article  CAS  PubMed  Google Scholar 

  59. Enuka Y, Lauriola M, Feldman ME, Sas-Chen A, Ulitsky I, Yarden Y. Circular RNAs are long-lived and display only minimal early alterations in response to a growth factor. Nucleic Acids Res. 2016;44(3):1370–83.

    Article  CAS  PubMed  Google Scholar 

  60. Rybak-Wolf A, Stottmeister C, Glažar P, Jens M, Pino N, Giusti S, et al. Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol Cell. 2015;58(5):870–85.

    Article  CAS  PubMed  Google Scholar 

  61. Lasda E, Parker R. Circular RNAs: diversity of form and function. RNA. 2014;20(12):1829–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Salzman J, Chen RE, Olsen MN, Wang PL, Brown PO. Cell-type specific features of circular RNA expression. PLoS Genet. 2013;9(9): e1003777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Nie H, Wang Y, Liao Z, Zhou J, Ou C. The function and mechanism of circular RNAs in gastrointestinal tumours. Cell Prolif. 2020;53(7): e12815.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chen LL. The expanding regulatory mechanisms and cellular functions of circular RNAs. Nat Rev Mol Cell Biol. 2020;21(8):475–90.

    Article  CAS  PubMed  Google Scholar 

  65. Zhou WY, Cai ZR, Liu J, Wang DS, Ju HQ, Xu RH. Circular RNA: metabolism, functions and interactions with proteins. Mol Cancer. 2020;19(1):172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Cocquerelle C, Mascrez B, Hétuin D, Bailleul B. Mis-splicing yields circular RNA molecules. Faseb j. 1993;7(1):155–60.

    Article  CAS  PubMed  Google Scholar 

  67. Capel B, Swain A, Nicolis S, Hacker A, Walter M, Koopman P, et al. Circular transcripts of the testis-determining gene Sry in adult mouse testis. Cell. 1993;73(5):1019–30.

    Article  CAS  PubMed  Google Scholar 

  68. Li RC, Ke S, Meng FK, Lu J, Zou XJ, He ZG, et al. CiRS-7 promotes growth and metastasis of esophageal squamous cell carcinoma via regulation of miR-7/HOXB13. Cell Death Dis. 2018;9(8):838.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Zeng K, Chen X, Xu M, Liu X, Hu X, Xu T, et al. CircHIPK3 promotes colorectal cancer growth and metastasis by sponging miR-7. Cell Death Dis. 2018;9(4):417.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Luan W, Shi Y, Zhou Z, Xia Y, Wang J. circRNA_0084043 promote malignant melanoma progression via miR-153-3p/Snail axis. Biochem Biophys Res Commun. 2018;502(1):22–9.

    Article  CAS  PubMed  Google Scholar 

  71. Yu CY, Li TC, Wu YY, Yeh CH, Chiang W, Chuang CY, et al. The circular RNA circBIRC6 participates in the molecular circuitry controlling human pluripotency. Nat Commun. 2017;8(1):1149.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  72. Sheng R, Li X, Wang Z, Wang X. Circular RNAs and their emerging roles as diagnostic and prognostic biomarkers in ovarian cancer. Cancer Lett. 2020;473:139–47.

    Article  CAS  PubMed  Google Scholar 

  73. Foruzandeh Z, Zeinali-Sehrig F, Nejati K, Rahmanpour D, Pashazadeh F, Seif F, et al. CircRNAs as potent biomarkers in ovarian cancer: a systematic scoping review. Cell Mol Biol Lett. 2021;26(1):41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Liu F, Wu X, Zhu H, Wang F. Dysregulated expression of circular RNAs serve as diagnostic and prognostic markers in ovarian and cervical cancer: a PRISMA-compliant systematic review and meta-analysis. Medicine (Baltimore). 2021;100(39): e27352.

    Article  CAS  PubMed  Google Scholar 

  75. Luo Y, Gui R. Circulating exosomal circFoxp1 confers cisplatin resistance in epithelial ovarian cancer cells. J Gynecol Oncol. 2020;31(5): e75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Chen Y, Ye X, Xia X, Lin X. Circular RNA ABCB10 correlates with advanced clinicopathological features and unfavorable survival, and promotes cell proliferation while reduces cell apoptosis in epithelial ovarian cancer. Cancer Biomark. 2019;26(2):151–61.

    Article  CAS  PubMed  Google Scholar 

  77. Liu N, Zhang J, Zhang LY, Wang L. CircHIPK3 is upregulated and predicts a poor prognosis in epithelial ovarian cancer. Eur Rev Med Pharmacol Sci. 2018;22(12):3713–8.

    CAS  PubMed  Google Scholar 

  78. Ning L, Long B, Zhang W, Yu M, Wang S, Cao D, et al. Circular RNA profiling reveals circEXOC6B and circN4BP2L2 as novel prognostic biomarkers in epithelial ovarian cancer. Int J Oncol. 2018;53(6):2637–46.

    CAS  PubMed  Google Scholar 

  79. Wang W, Wang J, Zhang X, Liu G. Serum circSETDB1 is a promising biomarker for predicting response to platinum-taxane-combined chemotherapy and relapse in high-grade serous ovarian cancer. Onco Targets Ther. 2019;12:7451–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ning L, Lang J, Wu L. Plasma circN4BP2L2 is a promising novel diagnostic biomarker for epithelial ovarian cancer. BMC Cancer. 2022;22(1):6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Qiu Y, Chen Y, Agbede O, Eshaghi E, Peng C. Circular RNAs in epithelial ovarian cancer: from biomarkers to therapeutic targets. Cancers (Basel). 2022;14(22):5711.

    Article  CAS  PubMed  Google Scholar 

  82. Chen S, Wu W, Li QH, Xie BM, Shen F, Du YP, et al. Circ-NOLC1 promotes epithelial ovarian cancer tumorigenesis and progression by binding ESRP1 and modulating CDK1 and RhoA expression. Cell Death Discov. 2021;7(1):22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Xia B, Zhao Z, Wu Y, Wang Y, Zhao Y, Wang J. Circular RNA circTNPO3 regulates paclitaxel resistance of ovarian cancer cells by miR-1299/NEK2 signaling pathway. Mol Ther Nucleic Acids. 2020;21:780–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Yang C, Yuan W, Yang X, Li P, Wang J, Han J, et al. Circular RNA circ-ITCH inhibits bladder cancer progression by sponging miR-17/miR-224 and regulating p21, PTEN expression. Mol Cancer. 2018;17(1):19.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Guo W, Zhang J, Zhang D, Cao S, Li G, Zhang S, et al. Polymorphisms and expression pattern of circular RNA circ-ITCH contributes to the carcinogenesis of hepatocellular carcinoma. Oncotarget. 2017;8(29):48169–77.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Lin C, Xu X, Yang Q, Liang L, Qiao S. Circular RNA ITCH suppresses proliferation, invasion, and glycolysis of ovarian cancer cells by up-regulating CDH1 via sponging miR-106a. Cancer Cell Int. 2020;20:336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Chen L, Zhang F, Sheng XG, Zhang SQ, Chen YT, Liu BW. MicroRNA-106a regulates phosphatase and tensin homologue expression and promotes the proliferation and invasion of ovarian cancer cells. Oncol Rep. 2016;36(4):2135–41.

    Article  CAS  PubMed  Google Scholar 

  88. Lai Y, Zhou B, Tan Q, Xu J, Wan T, Zhang L. LINC00116 enhances cervical cancer tumorigenesis through miR-106a/c-Jun pathway. J Cell Biochem. 2020;121(3):2247–57.

    Article  CAS  PubMed  Google Scholar 

  89. Zhao J, Klausen C, Qiu X, Cheng JC, Chang HM, Leung PC. Betacellulin induces Slug-mediated down-regulation of E-cadherin and cell migration in ovarian cancer cells. Oncotarget. 2016;7(20):28881–90.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Luo L, Gao YQ, Sun XF. Circular RNA ITCH suppresses proliferation and promotes apoptosis in human epithelial ovarian cancer cells by sponging miR-10a-α. Eur Rev Med Pharmacol Sci. 2018;22(23):8119–26.

    CAS  PubMed  Google Scholar 

  91. Ye J, Wu D, Shen J, Wu P, Ni C, Chen J, et al. Enrichment of colorectal cancer stem cells through epithelial-mesenchymal transition via CDH1 knockdown. Mol Med Rep. 2012;6(3):507–12.

    CAS  PubMed  Google Scholar 

  92. Bolaños JP, Almeida A, Moncada S. Glycolysis: a bioenergetic or a survival pathway? Trends Biochem Sci. 2010;35(3):145–9.

    Article  PubMed  Google Scholar 

  93. Qu D, Zou X, Liu Z. Propofol modulates glycolysis reprogramming of ovarian tumor via restraining circular RNA-zinc finger RNA-binding protein/microRNA-212-5p/superoxide dismutase 2 axis. Bioengineered. 2022;13(5):11881–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Liu H, Dilger JP, Lin J. Effects of local anesthetics on cancer cells. Pharmacol Ther. 2020;212: 107558.

    Article  CAS  PubMed  Google Scholar 

  95. Ren YL, Zhang W. Propofol promotes apoptosis of colorectal cancer cells via alleviating the suppression of lncRNA HOXA11-AS on miRNA let-7i. Biochem Cell Biol. 2020;98(2):90–8.

    Article  CAS  PubMed  Google Scholar 

  96. Yu X, Gao Y, Zhang F. Propofol inhibits pancreatic cancer proliferation and metastasis by up-regulating miR-328 and down-regulating ADAM8. Basic Clin Pharmacol Toxicol. 2019;125(3):271–8.

    Article  CAS  PubMed  Google Scholar 

  97. Sui H, Zhu C, Li Z, Yang J. Propofol suppresses gastric cancer tumorigenesis by modulating the circular RNA-PVT1/miR-195-5p/E26 oncogene homolog 1 axis. Oncol Rep. 2020;44(4):1736–46.

    CAS  PubMed  Google Scholar 

  98. Wang P, Chen J, Mu LH, Du QH, Niu XH, Zhang MY. Propofol inhibits invasion and enhances paclitaxel- induced apoptosis in ovarian cancer cells through the suppression of the transcription factor slug. Eur Rev Med Pharmacol Sci. 2013;17(13):1722–9.

    CAS  PubMed  Google Scholar 

  99. Olson SH, Carlson MD, Ostrer H, Harlap S, Stone A, Winters M, et al. Genetic variants in SOD2, MPO, and NQO1, and risk of ovarian cancer. Gynecol Oncol. 2004;93(3):615–20.

    Article  CAS  PubMed  Google Scholar 

  100. Bayer JL, Spitz DR, Christensen D, McCormick ML, Farley D, DeGeest K, et al. Biobehavioral and neuroendocrine correlates of antioxidant enzyme activity in ovarian carcinoma. Brain Behav Immun. 2015;50:58–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Yang H, Guo Y, Zhang Y, Wang D, Zhang G, Hou J, et al. Circ_MUC16 attenuates the effects of Propofol to promote the aggressive behaviors of ovarian cancer by mediating the miR-1182/S100B signaling pathway. BMC Anesthesiol. 2021;21(1):297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Yang T, Cheng J, Yang Y, Qi W, Zhao Y, Long H, et al. S100B Mediates Stemness of Ovarian Cancer Stem-Like Cells Through Inhibiting p53. Stem Cells. 2017;35(2):325–36.

    Article  CAS  PubMed  Google Scholar 

  103. Yang T, Cheng J, You J, Yan B, Liu H, Li F. S100B promotes chemoresistance in ovarian cancer stem cells by regulating p53. Oncol Rep. 2018;40(3):1574–82.

    CAS  PubMed  Google Scholar 

  104. Hou W, Zhang Y. Circ_0025033 promotes the progression of ovarian cancer by activating the expression of LSM4 via targeting miR-184. Pathol Res Pract. 2021;217: 153275.

    Article  CAS  PubMed  Google Scholar 

  105. Wu S, Le H. Dual roles of PKM2 in cancer metabolism. Acta Biochim Biophys Sin (Shanghai). 2013;45(1):27–35.

    Article  CAS  PubMed  Google Scholar 

  106. Pan Y, Xu T, Liu Y, Li W, Zhang W. Upregulated circular RNA circ_0025033 promotes papillary thyroid cancer cell proliferation and invasion via sponging miR-1231 and miR-1304. Biochem Biophys Res Commun. 2019;510(2):334–8.

    Article  CAS  PubMed  Google Scholar 

  107. Ye M, Hou H, Shen M, Dong S, Zhang T. Circular RNA circFOXM1 Plays a Role in Papillary Thyroid Carcinoma by Sponging miR-1179 and Regulating HMGB1 Expression. Mol Ther Nucleic Acids. 2020;19:741–50.

    Article  CAS  PubMed  Google Scholar 

  108. Xue R, Hua L, Xu W, Gao Y, Pang Y, Hao J. Derivation and validation of the potential core genes in pancreatic cancer for tumor-stroma crosstalk. Biomed Res Int. 2018;2018:4283673.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Wang J, Wu A, Yang B, Zhu X, Teng Y, Ai Z. Profiling and bioinformatics analyses reveal differential circular RNA expression in ovarian cancer. Gene. 2020;724: 144150.

    Article  CAS  PubMed  Google Scholar 

  110. Liu Y, He X, Chen Y, Cao D. Long non-coding RNA LINC00504 regulates the Warburg effect in ovarian cancer through inhibition of miR-1244. Mol Cell Biochem. 2020;464(1–2):39–50.

    Article  CAS  PubMed  Google Scholar 

  111. Xie, W., L.U. Liu, C. He, M. Zhao, R. Ni, Z. Zhang, et al., Circ_0002711 knockdown suppresses cell growth and aerobic glycolysis by modulating miR-1244/ROCK1 axis in ovarian cancer. J Biosci, 2021. 46.

  112. Julian L, Olson MF. Rho-associated coiled-coil containing kinases (ROCK): structure, regulation, and functions. Small GTPases. 2014;5: e29846.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Ma X, Dang Y, Shao X, Chen X, Wu F, Li Y. Ubiquitination and long non-coding RNAs regulate actin cytoskeleton regulators in cancer progression. Int J Mol Sci. 2019;20(12):2997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Reymond N, Im JH, Garg R, Cox S, Soyer M, Riou P, et al. RhoC and ROCKs regulate cancer cell interactions with endothelial cells. Mol Oncol. 2015;9(6):1043–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Zhang X, Zhang L, Du Y, Zheng H, Zhang P, Sun Y, et al. A novel FOXM1 isoform, FOXM1D, promotes epithelial-mesenchymal transition and metastasis through ROCKs activation in colorectal cancer. Oncogene. 2017;36(6):807–19.

    Article  CAS  PubMed  Google Scholar 

  116. Farooqi AA, Zahid R, Naureen H, Attar R, Gazouli M, Berardi R, et al. Regulation of ROCK1/2 by long non-coding RNAs and circular RNAs in different cancer types. Oncol Lett. 2022;23(5):159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Vennin C, Rath N, Pajic M, Olson MF, Timpson P. Targeting ROCK activity to disrupt and prime pancreatic cancer for chemotherapy. Small GTPases. 2020;11(1):45–52.

    Article  CAS  PubMed  Google Scholar 

  118. Fu Y, Sun H. The molecular mechanism of circRHOBTB3 inhibits the proliferation and invasion of epithelial ovarian cancer by serving as the ceRNA of miR-23a-3p. J Ovarian Res. 2022;15(1):66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Yalan, S., L. Yanfang, C. He, and T. Yujie, Circular RNA circRHOBTB3 inhibits ovarian cancer progression through PI3K/AKT signaling pathway. Panminerva Med, 2020.

  120. Yang Q, Li F, He AT, Yang BB. Circular RNAs: Expression, localization, and therapeutic potentials. Mol Ther. 2021;29(5):1683–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Chen Y, Li C, Tan C, Liu X. Circular RNAs: a new frontier in the study of human diseases. J Med Genet. 2016;53(6):359–65.

    Article  CAS  PubMed  Google Scholar 

  122. Dahl M, Daugaard I, Andersen MS, Hansen TB, Grønbæk K, Kjems J, et al. Enzyme-free digital counting of endogenous circular RNA molecules in B-cell malignancies. Lab Invest. 2018;98(12):1657–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Kristensen LS. Profiling of circRNAs using an enzyme-free digital counting method. Methods. 2021;196:11–6.

    Article  CAS  PubMed  Google Scholar 

  124. Du WW, Yang W, Li X, Awan FM, Yang Z, Fang L, et al. A circular RNA circ-DNMT1 enhances breast cancer progression by activating autophagy. Oncogene. 2018;37(44):5829–42.

    Article  CAS  PubMed  Google Scholar 

  125. Lu M, Wu Y, Zeng B, Sun J, Li Y, Luo J, et al. CircEHMT1 inhibits metastatic potential of breast cancer cells by modulating miR-1233-3p/KLF4/MMP2 axis. Biochem Biophys Res Commun. 2020;526(2):306–13.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The Natural Science Foundation of Gansu Province of China (20JR10RA693) and by the Project of Administration of Traditional Chinese Medicine of Gansu Province of China (GZKG-2020-46) and Medical Innovation and Development Project of Lanzhou University (lzuyxcx-2022-200) and the intra-Hospital Funds of the First Hospital of Lanzhou University (No.ldyyyn2021-2).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualisation, methodology and write the manuscript: YW, YY; software: XC; validation: YY. All the authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Yongxiu Yang.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Ethical approval

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Chen, X. & Yang, Y. CircRNA-regulated glucose metabolism in ovarian cancer: an emerging landscape for therapeutic intervention. Clin Transl Oncol 26, 584–596 (2024). https://doi.org/10.1007/s12094-023-03285-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-023-03285-4

Keywords

Navigation