Skip to main content

Advertisement

Log in

Mechanism of action and treatment of type I interferon in hepatocellular carcinoma

  • REVIEW ARTICLE
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Hepatocellular carcinoma (HCC) caused by HBV, HCV infection, and other factors is one of the most common malignancies in the world. Although, percutaneous treatments such as surgery, ethanol injection, radiofrequency ablation, and transcatheter treatments such as arterial chemoembolization are useful for local tumor control, they are not sufficient to improve the prognosis of patients with HCC. External interferon agents that induce interferon-related genes or type I interferon in combination with other drugs can reduce the recurrence rate and improve survival in HCC patients after surgery. Therefore, in this review, we focus on recent advances in the mechanism of action of type I interferons, emerging therapies, and potential therapeutic strategies for the treatment of HCC using IFNs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data availability does not apply to this paper because no new data were created or analyzed in this study.

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN ESTImates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021. https://doi.org/10.3322/caac.21660.

    Article  PubMed  Google Scholar 

  2. Petrick JL, McGlynn KA. The changing epidemiology of primary liver cancer. Curr Epidemiol Rep. 2019. https://doi.org/10.1007/s40471-019-00188-3.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Zhang CH, Cheng Y, Zhang S, Fan J, Gao Q. Changing epidemiology of hepatocellular carcinoma in Asia. Liver Int. 2022. https://doi.org/10.1111/liv.15251.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Du L, Liu W, Rosen ST, Chen Y. Mechanism of SUMOylation-mediated regulation of type I IFN expression. J Mol Biol. 2023. https://doi.org/10.1016/j.jmb.2023.167968.

    Article  PubMed  Google Scholar 

  5. Zhang Z, Urban S. New insights into HDV persistence: the role of interferon response and implications for upcoming novel therapies. J Hepatol. 2021. https://doi.org/10.1016/j.jhep.2020.11.032.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Anthony PP, Ishak KG, Nayak NC, Poulsen HE, Scheuer PJ, Sobin LH. The morphology of cirrhosis. Recommendations on definition, nomenclature, and classification by a working group sponsored by the World Health Organization. J Clin Pathol. 1978. https://doi.org/10.1136/jcp.31.5.395.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kanwal F, Khaderi S, Singal AG, Marrero JA, Loo N, Asrani SK, et al. Risk factors for HCC in contemporary cohorts of patients with cirrhosis. Hepatology. 2023. https://doi.org/10.1002/hep.32434.

    Article  PubMed  Google Scholar 

  8. Cohen SM. Alcoholic liver disease. Clin Liver Dis. 2016. https://doi.org/10.1016/j.cld.2016.05.001.

    Article  PubMed  Google Scholar 

  9. Crabb DW, Im GY, Szabo G, Mellinger JL, Lucey MR. Diagnosis and treatment of alcohol-associated liver diseases: 2019 practice guidance from the American Association for the Study of Liver Diseases. Hepatology. 2020. https://doi.org/10.1002/hep.30866.

    Article  PubMed  Google Scholar 

  10. Mathurin P, Bataller R. Trends in the management and burden of alcoholic liver disease. J Hepatol. 2015. https://doi.org/10.1016/j.jhep.2015.03.006.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Rehm J, Taylor B, Mohapatra S, Irving H, Baliunas D, Patra J, et al. Alcohol as a risk factor for liver cirrhosis: a systematic review and meta-analysis. Drug Alcohol Rev. 2010. https://doi.org/10.1111/j.1465-3362.2009.00153.x.

    Article  PubMed  Google Scholar 

  12. Mathurin P, Beuzin F, Louvet A, Carrié-Ganne N, Balian A, Trinchet JC, et al. Fibrosis progression occurs in a subgroup of heavy drinkers with typical histological features. Aliment Pharmacol Ther. 2007. https://doi.org/10.1111/j.1365-2036.2007.03302.x.

    Article  PubMed  Google Scholar 

  13. Singal AK, Mathurin P. Diagnosis and treatment of alcohol-associated liver disease: a review. JAMA. 2021. https://doi.org/10.1001/jama.2021.7683.

    Article  PubMed  Google Scholar 

  14. Wu EM, Wong LL, Hernandez BY, Ji JF, Jia W, Kwee SA, et al. Gender differences in hepatocellular cancer: disparities in nonalcoholic fatty liver disease/steatohepatitis and liver transplantation. Hepatoma Res. 2018. https://doi.org/10.20517/2394-5079.2018.87.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Saab S, Manne V, Nieto J, Schwimmer JB, Chalasani NP. Nonalcoholic fatty liver disease in Latinos. Clin Gastroenterol Hepatol. 2016. https://doi.org/10.1016/j.cgh.2015.05.001.

    Article  PubMed  Google Scholar 

  16. El-Serag HB, Kramer J, Duan Z, Kanwal F. Racial differences in the progression to cirrhosis and hepatocellular carcinoma in HCV-infected veterans. Am J Gastroenterol. 2014. https://doi.org/10.1038/ajg.2014.214.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Mittal S, Kramer JR, Omino R, Chayanupatkul M, Richardson PA, El-Serag HB, et al. Role of age and race in the risk of hepatocellular carcinoma in veterans with hepatitis B virus infection. Clin Gastroenterol Hepatol. 2018. https://doi.org/10.1016/j.cgh.2017.08.042.

    Article  PubMed  Google Scholar 

  18. Rich NE, Oji S, Mufti AR, Browning JD, Parikh ND, Odewole M, et al. Racial and ethnic disparities in nonalcoholic fatty liver disease prevalence, severity, and outcomes in the United States: a systematic review and meta-analysis. Clin Gastroenterol Hepatol. 2018. https://doi.org/10.1016/j.cgh.2017.09.041.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Li Q, Sun B, Zhuo Y, Jiang Z, Li R, Lin C, et al. Interferon and interferon-stimulated genes in HBV treatment. Front Immunol. 2022. https://doi.org/10.3389/fimmu.2022.1034968.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ng CT, Mendoza JL, Garcia KC, Oldstone MB. Alpha and beta type 1 interferon signaling: passage for diverse biologic outcomes. Cell. 2016. https://doi.org/10.1016/j.cell.2015.12.027.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Jaitin DA, Roisman LC, Jaks E, Gavutis M, Piehler J, Van der Heyden J, et al. Inquiring into the differential action of interferons (IFNs): an IFN-alpha2 mutant with enhanced affinity to IFNAR1 is functionally similar to IFN-beta. Mol Cell Biol. 2006. https://doi.org/10.1128/MCB.26.5.1888-1897.2006.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Saraiva M, O’Garra A. The regulation of IL-10 production by immune cells. Nat Rev Immunol. 2010. https://doi.org/10.1038/nri2711.

    Article  PubMed  Google Scholar 

  23. Sharpe AH, Wherry EJ, Ahmed R, Freeman GJ. The function of programmed cell death 1 and its ligands in regulating autoimmunity and infection. Nat Immunol. 2007. https://doi.org/10.1038/ni1443.

    Article  PubMed  Google Scholar 

  24. Ng CT, Nayak BP, Schmedt C, Oldstone MB. Immortalized clones of fibroblastic reticular cells activate virus-specific T cells during virus infection. Proc Natl Acad Sci U S A. 2012. https://doi.org/10.1073/pnas.1205850109.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kumaran Satyanarayanan S, El Kebir D, Soboh S, Butenko S, Sekheri M, Saadi J, et al. IFN-β is a macrophage-derived effector cytokine facilitating the resolution of bacterial inflammation. Nat Commun. 2019. https://doi.org/10.1038/s41467-019-10903-9.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Stark GR, Kerr IM, Williams BR, Silverman RH, Schreiber RD. How cells respond to interferons. Annu Rev Biochem. 1998. https://doi.org/10.1146/annurev.biochem.67.1.227.

    Article  PubMed  Google Scholar 

  27. Der SD, Zhou A, Williams BR, Silverman RH. Identification of genes differentially regulated by interferon alpha, beta, or gamma using oligonucleotide arrays. Proc Natl Acad Sci U S A. 1998. https://doi.org/10.1073/pnas.95.26.15623.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Leaman DW, Chawla-Sarkar M, Jacobs B, Vyas K, Sun Y, Ozdemir A, et al. Novel growth and death related interferon-stimulated genes (ISGs) in melanoma: greater potency of IFN-beta compared with IFN-alpha2. J Interferon Cytokine Res. 2003. https://doi.org/10.1089/107999003772084860.

    Article  PubMed  Google Scholar 

  29. Chawla-Sarkar M, Lindner DJ, Liu YF, Williams BR, Sen GC, Silverman RH, et al. Apoptosis and interferons: role of interferon-stimulated genes as mediators of apoptosis. Apoptosis. 2003. https://doi.org/10.1023/a:1023668705040.

    Article  PubMed  Google Scholar 

  30. Schwartz S, Agarwala SD, Mumbach MR, Jovanovic M, Mertins P, Shishkin A, Regev A, et al. High-resolution mapping reveals a conserved, widespread, dynamic mRNA methylation program in yeast meiosis. Cell. 2013. https://doi.org/10.1016/j.cell.2013.10.047.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Fustin JM, Doi M, Yamaguchi Y, Hida H, Nishimura S, Yoshida M, et al. RNA-methylation-dependent RNA processing controls the speed of the circadian clock. Cell. 2013. https://doi.org/10.1016/j.cell.2013.10.026.

    Article  PubMed  Google Scholar 

  32. Xiang Y, Laurent B, Hsu CH, Nachtergaele S, Lu Z, Sheng W, et al. RNA m6A methylation regulates the ultraviolet-induced DNA damage response. Nature. 2017. https://doi.org/10.1038/nature21671.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Geula S, Moshitch-Moshkovitz S, Dominissini D, Mansour AA, Kol N, Salmon-Divon M, et al. m6A mRNA methylation facilitates resolution of naïve pluripotency toward differentiation. Science. 2015. https://doi.org/10.1126/science.1261417.

    Article  PubMed  Google Scholar 

  34. Lence T, Akhtar J, Bayer M, Schmid K, Spindler L, Ho CH, et al. m6A modulates neuronal functions and sex determination in Drosophila. Nature. 2016. https://doi.org/10.1038/nature20568.

    Article  PubMed  Google Scholar 

  35. Zhang C, Chen Y, Sun B, Wang L, Yang Y, Ma D, et al. m6A modulates haematopoietic stem and progenitor cell specification. Nature. 2017. https://doi.org/10.1038/nature23883.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Yoon KJ, Ringeling FR, Vissers C, Jacob F, Pokrass M, Jimenez-Cyrus D, et al. Temporal control of mammalian cortical neurogenesis by m6A methylation. Cell. 2017. https://doi.org/10.1016/j.cell.2017.09.003.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Li HB, Tong J, Zhu S, Batista PJ, Duffy EE, Zhao J, et al. m6A mRNA methylation controls T cell homeostasis by targeting the IL-7/STAT5/SOCS pathways. Nature. 2017. https://doi.org/10.1038/nature23450.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Tong J, Cao G, Zhang T, Sefik E, Amezcua Vesely MC, Broughton JP, et al. m6A mRNA methylation sustains Treg suppressive functions. Cell Res. 2018. https://doi.org/10.1038/cr.2018.7.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Winkler R, Gillis E, Lasman L, Safra M, Geula S, Soyris C, et al. m6A modification controls the innate immune response to infection by targeting type I interferons. Nat Immunol. 2019. https://doi.org/10.1038/s41590-018-0275-z.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Wang YX, Niklasch M, Liu T, Wang Y, Shi B, Yuan W, et al. Interferon-inducible MX2 is a host restriction factor of hepatitis B virus replication. J Hepatol. 2020. https://doi.org/10.1016/j.jhep.2019.12.009.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kinast V, Plociennikowska A, Anggakusuma, Bracht T, Todt D, Brown RJP, et al. C19orf66 is an interferon-induced inhibitor of HCV replication that restricts formation of the viral replication organelle. J Hepatol. 2020. https://doi.org/10.1016/j.jhep.2020.03.047

    Article  PubMed  Google Scholar 

  42. Sun J, Wu G, Pastor F, Rahman N, Wang WH, Zhang Z, et al. RNA helicase DDX5 enables STAT1 mRNA translation and interferon signalling in hepatitis B virus replicating hepatocytes. Gut. 2022. https://doi.org/10.1136/gutjnl-2020-323126.

    Article  PubMed  Google Scholar 

  43. Zao X, Cheng J, Shen C, Guan G, Feng X, Zou J, et al. NFATc3 inhibits hepatocarcinogenesis and HBV replication via positively regulating RIG-I-mediated interferon transcription. Oncoimmunology. 2021. https://doi.org/10.1080/2162402X.2020.1869388.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Zhang Z, Yuan B, Lu N, Facchinetti V, Liu YJ. DHX9 pairs with IPS-1 to sense double-stranded RNA in myeloid dendritic cells. J Immunol. 2011. https://doi.org/10.4049/jimmunol.1101307.

    Article  PubMed  Google Scholar 

  45. Zhu S, Ding S, Wang P, Wei Z, Pan W, Palm NW, et al. Nlrp9b inflammasome restricts rotavirus infection in intestinal epithelial cells. Nature. 2017. https://doi.org/10.1038/nature22967.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Fullam A, Schröder M. DExD/H-box RNA helicases as mediators of anti-viral innate immunity and essential host factors for viral replication. Biochim Biophys Acta. 2013. https://doi.org/10.1016/j.bbagrm.2013.03.012.

    Article  PubMed  Google Scholar 

  47. Ren X, Wang D, Zhang G, Zhou T, Wei Z, Yang Y, et al. Nucleic DHX9 cooperates with STAT1 to transcribe interferon-stimulated genes. Sci Adv. 2023. https://doi.org/10.1126/sciadv.add5005.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Decque A, Joffre O, Magalhaes JG, Cossec JC, Blecher-Gonen R, Lapaquette P, et al. Sumoylation coordinates the repression of inflammatory and anti-viral gene-expression programs during innate sensing. Nat Immunol. 2016. https://doi.org/10.1038/ni.3342.

    Article  PubMed  Google Scholar 

  49. Crowl JT, Stetson DB. SUMO2 and SUMO3 redundantly prevent a noncanonical type I interferon response. Proc Natl Acad Sci U S A. 2018. https://doi.org/10.1073/pnas.1802114115.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Langston SP, Grossman S, England D, Afroze R, Bence N, Bowman D, et al. Discovery of TAK-981, a first-in-class inhibitor of SUMO-activating enzyme for the treatment of cancer. J Med Chem. 2021. https://doi.org/10.1021/acs.jmedchem.0c01491.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Kitajima S, Ivanova E, Guo S, Yoshida R, Campisi M, Sundararaman SK, et al. Suppression of STING associated with LKB1 loss in KRAS-driven lung cancer. Cancer Discov. 2019. https://doi.org/10.1158/2159-8290.CD-18-0689.

    Article  PubMed  Google Scholar 

  52. Cao X, Liang Y, Hu Z, Li H, Yang J, Hsu EJ, et al. Next generation of tumor-activating type I IFN enhances anti-tumor immune responses to overcome therapy resistance. Nat Commun. 2021. https://doi.org/10.1038/s41467-021-26112-2.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Zou W, Luo C, Zhang Z, Liu J, Gu J, Pei Z, et al. A novel oncolytic adenovirus targeting to telomerase activity in tumor cells with potent. Oncogene. 2004. https://doi.org/10.1038/sj.onc.1207033.

    Article  PubMed  Google Scholar 

  54. Liu XY. Targeting gene-virotherapy of cancer and its prosperity. Cell Res. 2006. https://doi.org/10.1038/sj.cr.7310108.

    Article  PubMed  Google Scholar 

  55. Liu XY, Gu JF. Targeting gene-virotherapy of cancer. Cell Res. 2006. https://doi.org/10.1038/sj.cr.7310005.

    Article  PubMed  Google Scholar 

  56. He LF, Gu JF, Tang WH, Fan JK, Wei N, Zou WG, et al. Significant antitumor activity of oncolytic adenovirus expressing human interferon-beta for hepatocellular carcinoma. J Gene Med. 2008. https://doi.org/10.1002/jgm.1231.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Wang L, Jia D, Duan F, Sun Z, Liu X, Zhou L, et al. Combined anti-tumor effects of IFN-α and sorafenib on hepatocellular carcinoma in vitro and in vivo. Biochem Biophys Res Commun. 2012. https://doi.org/10.1016/j.bbrc.2012.05.056.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Kusano H, Ogasawara S, Akiba J, Nakayama M, Ueda K, Yano H. Antiproliferative effects of sorafenib and pegylated IFN-α2b on human liver cancer cells in vitro and in vivo. Int J Oncol. 2013. https://doi.org/10.3892/ijo.2013.1904.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Enomoto H, Tao L, Eguchi R, Sato A, Honda M, Kaneko S, et al. The in vivo antitumor effects of type I-interferon against hepatocellular carcinoma: the suppression of tumor cell growth and angiogenesis. Sci Rep. 2017. https://doi.org/10.1038/s41598-017-12414-3.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Fraschilla I, Pillai S. Viewing Siglecs through the lens of tumor immunology. Immunol Rev. 2017. https://doi.org/10.1111/imr.12526.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Duan S, Paulson JC. Siglecs as immune cell checkpoints in disease. Annu Rev Immunol. 2020. https://doi.org/10.1146/annurev-immunol-102419-035900.

    Article  PubMed  Google Scholar 

  62. Liao J, Zeng DN, Li JZ, Hua QM, Huang CX, Xu J, et al. Type I IFNs repolarized a CD169+ macrophage population with anti-tumor potentials in hepatocellular carcinoma. Mol Ther. 2022. https://doi.org/10.1016/j.ymthe.2021.09.021.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Zou W, Wolchok JD, Chen L. PD-L1 (B7–H1) and PD-1 pathway blockade for cancer therapy: Mechanisms, response biomarkers, and combinations. Sci Transl Med. 2016. https://doi.org/10.1126/scitranslmed.aad7118.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Vaddepally RK, Kharel P, Pandey R, Garje R, Chandra AB. Review of indications of FDA-approved immune checkpoint inhibitors per NCCN guidelines with the level of evidence. Cancers (Basel). 2020. https://doi.org/10.3390/cancers12030738.

    Article  PubMed  Google Scholar 

  65. Wei SC, Duffy CR, Allison JP. Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discov. 2018. https://doi.org/10.1158/2159-8290.CD-18-0367.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Dong H, Zhu G, Tamada K, Chen L. B7–H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat Med. 1999. https://doi.org/10.1038/70932.

    Article  PubMed  Google Scholar 

  67. Fried MW, Shiffman ML, Reddy KR, Smith C, Marinos G, Gonçales FL Jr, et al. Peginterferon alfa-2a plus ribavirin for chronic hepatitis C virus infection. N Engl J Med. 2002. https://doi.org/10.1056/NEJMoa020047.

    Article  PubMed  Google Scholar 

  68. Zhu Y, Chen M, Xu D, Li TE, Zhang Z, Li JH, et al. The combination of PD-1 blockade with interferon-α has a synergistic effect on hepatocellular carcinoma. Cell Mol Immunol. 2022. https://doi.org/10.1038/s41423-022-00848-3.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Tang D, Kang R, Berghe TV, Vandenabeele P, Kroemer G. The molecular machinery of regulated cell death. Cell Res. 2019. https://doi.org/10.1038/s41422-019-0164-5.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Koren E, Fuchs Y. Modes of regulated cell death in cancer. Cancer Discov. 2021. https://doi.org/10.1158/2159-8290.CD-20-0789.

    Article  PubMed  Google Scholar 

  71. Chen X, Zeh HJ, Kang R, Kroemer G, Tang D. Cell death in pancreatic cancer: from pathogenesis to therapy. Nat Rev Gastroenterol Hepatol. 2021. https://doi.org/10.1038/s41575-021-00486-6.

    Article  PubMed  Google Scholar 

  72. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012. https://doi.org/10.1016/j.cell.2012.03.042.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Chen X, Kang R, Kroemer G, Tang D. Broadening horizons: the role of ferroptosis in cancer. Nat Rev Clin Oncol. 2021. https://doi.org/10.1038/s41571-020-00462-0.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Tang R, Xu J, Zhang B, Liu J, Liang C, Hua J, et al. Ferroptosis, necroptosis, and pyroptosis in anticancer immunity. J Hematol Oncol. 2020. https://doi.org/10.1186/s13045-020-00946-7.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Xu H, Ye D, Ren M, Zhang H, Bi F. Ferroptosis in the tumor microenvironment: perspectives for immunotherapy. Trends Mol Med. 2021. https://doi.org/10.1016/j.molmed.2021.06.014.

    Article  PubMed  Google Scholar 

  76. Zhang C, Liu X, Jin S, Chen Y, Guo R. Ferroptosis in cancer therapy: a novel approach to reversing drug resistance. Mol Cancer. 2022. https://doi.org/10.1186/s12943-022-01530-y.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Budinger D, Barral S, Soo AKS, Kurian MA. The role of manganese dysregulation in neurological disease: emerging evidence. Lancet Neurol. 2021. https://doi.org/10.1016/S1474-4422(21)00238-6.

    Article  PubMed  Google Scholar 

  78. Horning KJ, Caito SW, Tipps KG, Bowman AB, Aschner M. Manganese Is Essential for Neuronal Health. Annu Rev Nutr. 2015. https://doi.org/10.1146/annurev-nutr-071714-034419.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Kwakye GF, Paoliello MM, Mukhopadhyay S, Bowman AB, Aschner M. Manganese-induced parkinsonism and Parkinson’s disease: shared and distinguishable features. Int J Environ Res Public Health. 2015. https://doi.org/10.3390/ijerph120707519.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Zhang S, Kang L, Dai X, Chen J, Chen Z, Wang M, et al. Manganese induces tumor cell ferroptosis through type-I IFN dependent inhibition of mitochondrial dihydroorotate dehydrogenase. Free Radic Biol Med. 2022. https://doi.org/10.1016/j.freeradbiomed.2022.10.004.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Chen X, Tang Q, Wang J, Zhou Y, Li F, Xie Y, et al. A DNA/DMXAA/metal-organic framework activator of innate immunity for boosting anticancer immunity. Adv Mater. 2023. https://doi.org/10.1002/adma.202210440.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Wang K, Tepper JE. Radiation therapy-associated toxicity: etiology, management, and prevention. CA Cancer J Clin. 2021. https://doi.org/10.3322/caac.21689.

    Article  PubMed  Google Scholar 

  83. Reisländer T, Groelly FJ, Tarsounas M. DNA damage and cancer immunotherapy: a STING in the tale. Mol Cell. 2020. https://doi.org/10.1016/j.molcel.2020.07.026.

    Article  PubMed  Google Scholar 

  84. Yum S, Li M, Chen ZJ. Old dogs, new trick: classic cancer therapies activate cGAS. Cell Res. 2020. https://doi.org/10.1038/s41422-020-0346-1.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Hou Y, Liang H, Rao E, Zheng W, Huang X, Deng L, et al. Non-canonical NF-κB Antagonizes STING Sensor-Mediated DNA Sensing in Radiotherapy. Immunity. 2018. https://doi.org/10.1016/j.immuni.2018.07.008.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Long Y, Guo J, Chen J, Sun J, Wang H, Peng X, et al. GPR162 activates STING dependent DNA damage pathway as a novel tumor suppressor and radiation sensitizer. Signal Transduct Target Ther. 2023. https://doi.org/10.1038/s41392-022-01224-3.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Farrell PJ, Broeze RJ, Lengyel P. Accumulation of an mRNA and protein in interferon-treated Ehrlich ascites tumour cells. Nature. 1979. https://doi.org/10.1038/279523a0.

    Article  PubMed  Google Scholar 

  88. Chen RH, Xiao ZW, Yan XQ, Han P, Liang FY, Wang JY, et al. Tumor cell-secreted ISG15 promotes tumor cell migration and immune suppression by inducing the macrophage M2-like phenotype. Front Immunol. 2020. https://doi.org/10.3389/fimmu.2020.594775.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Xiong F, Wang Q, Wu GH, Liu WZ, Wang B, Chen YJ. Direct and indirect effects of IFN-α2b in malignancy treatment: not only an archer but also an arrow. Biomark Res. 2022. https://doi.org/10.1186/s40364-022-00415-y.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Giorgetti SI, Etcheverrigaray M, Terry F, Martin W, De Groot AS, Ceaglio N, et al. Development of highly stable and de-immunized versions of recombinant alpha interferon: promising candidates for the treatment of chronic and emerging viral diseases. Clin Immunol. 2021. https://doi.org/10.1016/j.clim.2021.108888.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Cao X. ISG15 secretion exacerbates inflammation in SARS-CoV-2 infection. Nat Immunol. 2021. https://doi.org/10.1038/s41590-021-01056-3.

    Article  PubMed  Google Scholar 

  92. Dos Santos PF, Van Weyenbergh J, Delgobo M, Oliveira Patricio D, Ferguson BJ, Guabiraba R, et al. ISG15-induced IL-10 is a novel anti-inflammatory myeloid axis disrupted during active tuberculosis. J Immunol. 2018. https://doi.org/10.4049/jimmunol.1701120.

    Article  PubMed  Google Scholar 

  93. Nguyen HM, Bommareddy PK, Silk AW, Saha D. Optimal timing of PD-1 blockade in combination with oncolytic virus therapy. Semin Cancer Biol. 2022. https://doi.org/10.1016/j.semcancer.2021.05.019.

    Article  PubMed  Google Scholar 

  94. Oladejo M, Paulishak W, Wood L. Synergistic potential of immune checkpoint inhibitors and therapeutic cancer vaccines. Semin Cancer Biol. 2023. https://doi.org/10.1016/j.semcancer.2022.12.003.

    Article  PubMed  Google Scholar 

  95. Gupta N, Gaikwad S, Kaushik I, Wright SE, Markiewski MM, Srivastava SK. Atovaquone suppresses triple-negative breast tumor growth by reducing immune-suppressive cells. Int J Mol Sci. 2021. https://doi.org/10.3390/ijms22105150.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Zhu AX, Rosmorduc O, Evans TR, Ross PJ, Santoro A, Carrilho FJ, et al. SEARCH: a phase III, randomized, double-blind, placebo-controlled trial of sorafenib plus erlotinib in patients with advanced hepatocellular carcinoma. J Clin Oncol. 2015. https://doi.org/10.1200/JCO.2013.53.7746.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Supported by the Scientific and Technological Innovation Major Base of Guangxi(No.2022-36-Z05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyong Zhang.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.

Ethical approval

As this paper is only a review of the data already collected in the database, this paper does not include any studies that directly involve human participants or animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, C., Ye, Z., Ju, Y. et al. Mechanism of action and treatment of type I interferon in hepatocellular carcinoma. Clin Transl Oncol 26, 326–337 (2024). https://doi.org/10.1007/s12094-023-03266-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-023-03266-7

Keywords

Navigation