Skip to main content

Advertisement

Log in

The prognostic values of FOXP3+ tumor-infiltrating T cells in breast cancer: a systematic review and meta-analysis

  • Research Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Background

Tumor microenvironment is infiltrated by many immune cells, of which Regulatory T (Treg) cells are usually considered as negative regulators of the immune responses. However, the effect of FOXP3+ (forkhead box transcription factor 3) Treg cells infiltrated into the tumor areas on the prognosis of breast cancer is controversial. This meta-analysis aimed to dissect the potential values of FOXP3+ tumor-infiltrating lymphocytes (TILs) as a prognosis predictor of breast cancer.

Methods

After systematic retrieval of all relevant studies, 28 eligible articles were identified for meta-analysis. Odd ratio (OR), hazard ratio (HR), and 95% confidence interval (CI) were obtained for pooled analyses of pathological complete response (pCR), overall survival (OS), and corresponding forest plots and funnel plots were plotted, respectively.

Results

Pooled results revealed that patients with higher levels of FOXP3+ TILs experienced better pCR (OR: 1.24, 95% CI 1.09–1.41) and OS (HR: 0.79, 95% CI 0.64–0.97). Subgroup analysis revealed that elevated FOXP3+ TILs were significantly associated with improved pCR (OR: 1.20, 95% CI 1.02–1.40) and OS (HR: 0.22, 95% CI 0.06–0.88) in human epidermal growth factor receptor 2 positive (HER2+) breast cancer patients. Furthermore, FOXP3+ TILs in the stromal area were statistically correlated with the favorable pCR (OR: 1.22, 95% CI 1.08–1.38) and OS (HR: 0.68, 95% CI 0.49–0.96).

Conclusions

The predictive role of FOXP3+ TILs in the prognosis of breast cancer is influenced by various factors such as molecular subtype of breast cancer and the location of Treg. In HER2+ breast cancer and triple-negative breast cancer, FOXP3+ TILs are associated with better pCR and OS. Additionally, FOXP3+ TILs in stromal represent a favourable prognosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article (and its supplementary information files).

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.

    Article  PubMed  Google Scholar 

  2. Yeo SK, Guan JL. Breast cancer: multiple subtypes within a tumor? Trends Cancer. 2017;3(11):753–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tsang JYS, Tse G. Molecular Classification of Breast Cancer. Adv Anat Pathol. 2020;27(1):27–35.

    Article  CAS  PubMed  Google Scholar 

  4. Fridman WH, Pagès F, Sautès-Fridman C, Galon J. The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer. 2012;12(4):298–306.

    Article  CAS  PubMed  Google Scholar 

  5. Tavares MC, Sampaio CD, Lima GE, Andrade VP, Gonçalves DG, Macedo MP, et al. A high CD8 to FOXP3 ratio in the tumor stroma and expression of PTEN in tumor cells are associated with improved survival in non-metastatic triple-negative breast carcinoma. BMC Cancer. 2021;21(1):901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Paijens ST, Vledder A, de Bruyn M, Nijman HW. Tumor-infiltrating lymphocytes in the immunotherapy era. Cell Mol Immunol. 2021;18(4):842–59.

    Article  CAS  PubMed  Google Scholar 

  7. Whiteside TL. FOXP3+ treg as a therapeutic target for promoting anti-tumor immunity. Expert Opin Ther Targets. 2018;22(4):353–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tanaka A, Sakaguchi S. Targeting treg cells in cancer immunotherapy. Eur J Immunol. 2019;49(8):1140–6.

    Article  CAS  PubMed  Google Scholar 

  9. Wing JB, Tanaka A, Sakaguchi S. Human FOXP3(+) Regulatory T cell heterogeneity and function in autoimmunity and cancer. Immunity. 2019;50(2):302–16.

    Article  CAS  PubMed  Google Scholar 

  10. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Cooke A, Smith D, Booth A. Beyond PICO: the SPIDER tool for qualitative evidence synthesis. Qual Health Res. 2012;22(10):1435–43.

    Article  PubMed  Google Scholar 

  12. Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol. 2010;25(9):603–5.

    Article  PubMed  Google Scholar 

  13. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327(7414):557–60.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Cohen JF, Chalumeau M, Cohen R, Korevaar DA, Khoshnood B, Bossuyt PM. Cochran’s Q test was useful to assess heterogeneity in likelihood ratios in studies of diagnostic accuracy. J Clin Epidemiol. 2015;68(3):299–306.

    Article  PubMed  Google Scholar 

  15. Oda N, Shimazu K, Naoi Y, Morimoto K, Shimomura A, Shimoda M, et al. Intratumoral regulatory T cells as an independent predictive factor for pathological complete response to neoadjuvant paclitaxel followed by 5-FU/epirubicin/cyclophosphamide in breast cancer patients. Breast Cancer Res Treat. 2012;136(1):107–16.

    Article  CAS  PubMed  Google Scholar 

  16. Seo AN, Lee HJ, Kim EJ, Kim HJ, Jang MH, Lee HE, et al. Tumour-infiltrating CD8+ lymphocytes as an independent predictive factor for pathological complete response to primary systemic therapy in breast cancer. Br J Cancer. 2013;109(10):2705–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Denkert C, von Minckwitz G, Brase JC, Sinn BV, Gade S, Kronenwett R, et al. Tumor-infiltrating lymphocytes and response to neoadjuvant chemotherapy with or without carboplatin in human epidermal growth factor receptor 2-positive and triple-negative primary breast cancers. J Clin Oncol. 2015;33(9):983–91.

    Article  CAS  PubMed  Google Scholar 

  18. Lee KH, Kim EY, Park YL, Do SI, Chae SW, Park CH. Expression of epithelial-mesenchymal transition driver brachyury and status of tumor-infiltrating CD8+ and FOXP3+ lymphocytes in predicting treatment responses to neoadjuvant chemotherapy of breast cancer. Tumour Biol. 2017;39(6):1010428317710575.

    Article  PubMed  Google Scholar 

  19. de Groot AF, Blok EJ, Charehbili A, Engels CC, Smit VTHBM, Dekker-Ensink NG, et al. Strong CD8+ lymphocyte infiltration in combination with expression of HLA class I is associated with better tumor control in breast cancer patients treated with neoadjuvant chemotherapy. Breast Cancer Res Treat. 2019;175(3):605–15.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Liu Z, Wang C, Chen X, Zhu J, Sun X, Xia Q, et al. Pathological response and predictive role of tumour-infiltrating lymphocytes in HER2-positive early breast cancer treated with neoadjuvant pyrotinib plus trastuzumab and chemotherapy (Panphila): a multicentre phase 2 trial. Eur J Cancer. 2022;165:157–68.

    Article  CAS  PubMed  Google Scholar 

  21. Liu F, Li Y, Ren M, Zhang X, Guo X, Lang R, et al. Peritumoral FOXP3+ regulatory T cell is sensitive to chemotherapy while intratumoral FOXP3+ regulatory T cell is prognostic predictor of breast cancer patients. Breast Cancer Res Treat. 2012;135(2):459–67.

    Article  CAS  PubMed  Google Scholar 

  22. Zhao X, Li Y, Wang X, Wu J, Yuan Y, Lv S, et al. Synergistic association of FOXP3+ tumor infiltrating lymphocytes with CCL20 expressions with poor prognosis of primary breast cancer: a retrospective cohort study. Medicine (Baltimore). 2019;98(50):e18403.

    Article  CAS  PubMed  Google Scholar 

  23. Xu Y, Lan S, Zheng Q. Prognostic significance of infiltrating immune cell subtypes in invasive ductal carcinoma of the breast. Tumori. 2018;104(3):196–201.

    Article  CAS  PubMed  Google Scholar 

  24. Tian W, Wang L, Yuan L, Duan W, Zhao W, Wang S, et al. A prognostic risk model for patients with triple negative breast cancer based on stromal natural killer cells, tumor-associated macrophages and growth-arrest specific protein 6. Cancer Sci. 2016;107(7):882–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Takenaka M, Seki N, Toh U, Hattori S, Kawahara A, Yamaguchi T, et al. FOXP3 expression in tumor cells and tumor-infiltrating lymphocytes is associated with breast cancer prognosis. Mol Clin Oncol. 2013;1(4):625–32.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Stovgaard ES, Asleh K, Riaz N, Leung S, Gao D, Nielsen LB, et al. The immune microenvironment and relation to outcome in patients with advanced breast cancer treated with docetaxel with or without gemcitabine. Oncoimmunology. 2021;10(1):1924492.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ma C, Zhang Q, Ye J, Wang F, Zhang Y, Wevers E, et al. Tumor-infiltrating γδ T lymphocytes predict clinical outcome in human breast cancer. J Immunol. 2012;189(10):5029–36.

    Article  CAS  PubMed  Google Scholar 

  28. Liu F, Lang R, Zhao J, Zhang X, Pringle GA, Fan Y, et al. CD8+ cytotoxic T cell and FOXP3+ regulatory T cell infiltration in relation to breast cancer survival and molecular subtypes. Breast Cancer Res Treat. 2011;130(2):645–55.

    Article  CAS  PubMed  Google Scholar 

  29. Li Z, Dong P, Ren M, Song Y, Qian X, Yang Y, et al. PD-L1 expression is associated with tumor FOXP3(+) regulatory T-cell infiltration of breast cancer and poor prognosis of patient. J Cancer. 2016;7(7):784–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lee S, Cho EY, Park YH, Ahn JS, Im YH. Prognostic impact of FOXP3 expression in triple-negative breast cancer. Acta Oncol. 2013;52(1):73–81.

    Article  CAS  PubMed  Google Scholar 

  31. Lee KH, Kim EY, Yun JS, Park YL, Do SI, Chae SW, et al. The prognostic and predictive value of tumor-infiltrating lymphocytes and hematologic parameters in patients with breast cancer. BMC Cancer. 2018;18(1):938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Koletsa T, Kotoula V, Koliou GA, Manousou K, Chrisafi S, Zagouri F, et al. Prognostic impact of stromal and intratumoral CD3, CD8 and FOXP3 in adjuvantly treated breast cancer: do they add information over stromal tumor-infiltrating lymphocyte density? Cancer Immunol Immunother. 2020;69(8):1549–64.

    Article  CAS  PubMed  Google Scholar 

  33. Kim S, Lee A, Lim W, Park S, Cho MS, Koo H, et al. Zonal difference and prognostic significance of foxp3 regulatory T cell infiltration in breast cancer. J Breast Cancer. 2014;17(1):8–17.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Jørgensen N, Hviid TVF, Nielsen LB, Sønderstrup IMH, Eriksen JO, Ejlertsen B, et al. Tumour-infiltrating CD4-, CD8- and FOXP3-positive immune cells as predictive markers of mortality in BRCA1- and BRCA2-associated breast cancer. Br J Cancer. 2021;125(10):1388–98.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Jamiyan T, Kuroda H, Yamaguchi R, Nakazato Y, Noda S, Onozaki M, et al. Prognostic impact of a tumor-infiltrating lymphocyte subtype in triple negative cancer of the breast. Breast Cancer. 2020;27(5):880–92.

    Article  PubMed  Google Scholar 

  36. Demir L, Yigit S, Ellidokuz H, Erten C, Somali I, Kucukzeybek Y, et al. Predictive and prognostic factors in locally advanced breast cancer: effect of intratumoral FOXP3+ Tregs. Clin Exp Metastasis. 2013;30(8):1047–62.

    Article  CAS  PubMed  Google Scholar 

  37. da Silva JL, de Albuquerque LZ, Rodrigues FR, de Mesquita GG, Fernandes PV, Thuler LCS, et al. Prognostic influence of residual tumor-infiltrating lymphocyte subtype after neoadjuvant chemotherapy in triple-negative breast cancer. Front Oncol. 2021;11:636716.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Chen TH, Zhang YC, Tan YT, An X, Xue C, Deng YF, et al. Tumor-infiltrating lymphocytes predict prognosis of breast cancer patients treated with anti-Her-2 therapy. Oncotarget. 2017;8(3):5219–32.

    Article  PubMed  Google Scholar 

  39. Bottai G, Raschioni C, Losurdo A, Di Tommaso L, Tinterri C, Torrisi R, et al. An immune stratification reveals a subset of PD-1/LAG-3 double-positive triple-negative breast cancers. Breast Cancer Res. 2016;18(1):121.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Bates GJ, Fox SB, Han C, Leek RD, Garcia JF, Harris AL, et al. Quantification of regulatory T cells enables the identification of high-risk breast cancer patients and those at risk of late relapse. J Clin Oncol. 2006;24(34):5373–80.

    Article  PubMed  Google Scholar 

  41. Engels CC, Charehbili A, van de Velde CJ, Bastiaannet E, Sajet A, Putter H, et al. The prognostic and predictive value of Tregs and tumor immune subtypes in postmenopausal, hormone receptor-positive breast cancer patients treated with adjuvant endocrine therapy: a Dutch TEAM study analysis. Breast Cancer Res Treat. 2015;149(3):587–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Li F, Zhao Y, Wei L, Li S, Liu J. Tumor-infiltrating Treg, MDSC, and IDO expression associated with outcomes of neoadjuvant chemotherapy of breast cancer. Cancer Biol Ther. 2018;19(8):695–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Dieci MV, Miglietta F, Guarneri V. Immune infiltrates in breast cancer: recent updates and clinical implications. Cells. 2021;10(2):223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gao ZH, Li CX, Liu M, Jiang JY. Predictive and prognostic role of tumour-infiltrating lymphocytes in breast cancer patients with different molecular subtypes: a meta-analysis. BMC Cancer. 2020;20(1):1150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gao G, Wang Z, Qu X, Zhang Z. Prognostic value of tumor-infiltrating lymphocytes in patients with triple-negative breast cancer: a systematic review and meta-analysis. BMC Cancer. 2020;20(1):179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Stanton SE, Disis ML. Clinical significance of tumor-infiltrating lymphocytes in breast cancer. J Immunother Cancer. 2016;4:59.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Hashemi V, Maleki LA, Esmaily M, Masjedi A, Ghalamfarsa G, Namdar A, et al. Regulatory T cells in breast cancer as a potent anti-cancer therapeutic target. Int Immunopharmacol. 2020;78:106087.

    Article  CAS  PubMed  Google Scholar 

  48. Shou J, Zhang Z, Lai Y, Chen Z, Huang J. Worse outcome in breast cancer with higher tumor-infiltrating FOXP3+ Tregs: a systematic review and meta-analysis. BMC Cancer. 2016;16(1):687.

    Article  PubMed  PubMed Central  Google Scholar 

  49. West NR, Kost SE, Martin SD, Milne K, Deleeuw RJ, Nelson BH, et al. Tumour-infiltrating FOXP3(+) lymphocytes are associated with cytotoxic immune responses and good clinical outcome in oestrogen receptor-negative breast cancer. Br J Cancer. 2013;108(1):155–62.

    Article  CAS  PubMed  Google Scholar 

  50. BouZerdan M, Ghorayeb T, Saliba F, Allam S, BouZerdan M, Yaghi M, et al. Triple negative breast cancer: updates on classification and treatment in 2021. Cancers (Basel). 2022;14(5):1253.

    Article  CAS  Google Scholar 

  51. Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest. 2011;121(7):2750–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Jiang D, Gao Z, Cai Z, Wang M, He J. Clinicopathological and prognostic significance of FOXP3+ tumor infiltrating lymphocytes in patients with breast cancer: a meta-analysis. BMC Cancer. 2015;15:727.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Catacchio I, Silvestris N, Scarpi E, Schirosi L, Scattone A, Mangia A. Intratumoral, rather than stromal, CD8+ T cells could be a potential negative prognostic marker in invasive breast cancer patients. Transl Oncol. 2019;12(3):585–95.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Nelson MA, Ngamcherdtrakul W, Luoh SW, Yantasee W. Prognostic and therapeutic role of tumor-infiltrating lymphocyte subtypes in breast cancer. Cancer Metastasis Rev. 2021;40(2):519–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mahmoud SM, Paish EC, Powe DG, Macmillan RD, Grainge MJ, Lee AH, et al. Tumor-infiltrating CD8+ lymphocytes predict clinical outcome in breast cancer. J Clin Oncol. 2011;29(15):1949–55.

    Article  PubMed  Google Scholar 

  56. Sakaguchi A, Horimoto Y, Onagi H, Ikarashi D, Nakayama T, Nakatsura T, et al. Plasma cell infiltration and treatment effect in breast cancer patients treated with neoadjuvant chemotherapy. Breast Cancer Res. 2021;23(1):99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kuroda H, Jamiyan T, Yamaguchi R, Kakumoto A, Abe A, Harada O, et al. Prognostic value of tumor-infiltrating B lymphocytes and plasma cells in triple-negative breast cancer. Breast Cancer. 2021;28(4):904–14.

    Article  PubMed  Google Scholar 

  58. Yeong J, Thike AA, Lim JC, Lee B, Li H, Wong SC, et al. Higher densities of Foxp3(+) regulatory T cells are associated with better prognosis in triple-negative breast cancer. Breast Cancer Res Treat. 2017;163(1):21–35.

    Article  CAS  PubMed  Google Scholar 

  59. Haas M, Dimmler A, Hohenberger W, Grabenbauer GG, Niedobitek G, Distel LV. Stromal regulatory T-cells are associated with a favourable prognosis in gastric cancer of the cardia. BMC Gastroenterol. 2009;9:65.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank all the participants in this study.

Funding

We are grateful for financial support from the National Science Foundation of China (82073288, 81902143).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhenlin Nie or Bangshun He.

Ethics declarations

Ethical approval

Not applicable.

Conflict of interest

All authors declare that they have no conflict of interest.

Informed consent

For this type of study, formal consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 262 KB)

Supplementary file2 (PDF 202 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Wang, Y., Lu, F. et al. The prognostic values of FOXP3+ tumor-infiltrating T cells in breast cancer: a systematic review and meta-analysis. Clin Transl Oncol 25, 1830–1843 (2023). https://doi.org/10.1007/s12094-023-03080-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-023-03080-1

Keywords

Navigation