Skip to main content

Advertisement

Log in

Frequently mutated genes in predicting the relapse of stage I lung adenocarcinoma

  • RESEARCH ARTICLE
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Purpose

Approximately, 45–65% stage I non-small cell lung cancer (NSCLC) patients with surgical resection relapse within 5 years. Therefore, it is urgent to identify the predictors involved in the relapse of stage I NSCLC.

Methods/patients

Targeted sequencing was used to examine the mutation of tumor tissues and matched adjacent normal tissues from 35 patients with stage I lung adenocarcinoma (LUAD). Then, tissue microarrays containing tumor tissues from 149 stage I LUAD patients were used to assess protein expression of frequently mutated genes by immunohistochemistry. COX regression model was used to evaluate the impacts of frequently mutated genes and their protein expression on relapse-free survival (RFS) in stage I LUAD.

Results and conclusions

Three hundred and twenty-nine non-synonymous somatic variants were identified in 161 genes among these 35 patients. EGFR, TP53, LRP1B, RBM10, KRAS, NTRK3, RB1, ALK, APC, FAT2, KEAP1, MED12 and MLL3 were described as frequently mutated genes with prevalence more than 10%. Patients harboring KRAS mutation had more relapse in 1 year after surgical resection. For the expression of these frequently mutated genes in 149 stage I patients, multivariate Cox regression analyses showed that the expression of RBM10 was positively associated with RFS in all patients (HR 0.40, 95% CI 0.15–1.0, p = 0.052), and the expression of APC was negative associated with RFS in patients with EGFR mutations (HR 3.10, 95% CI 1.54–6.26, p = 0.002). Stage I LUAD patients with KRAS mutation or low RBM10 expression are inclined to receive more positive intervention rather than just disease surveillance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets used and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.

    Article  PubMed  Google Scholar 

  2. NCCN. Clinical practice guidelines in oncology (NCCN Guidelines®) non-small cell lung cancer (Version 2.2020). PMID:33668021 https://www.nccn.org/2020. https://pubmed.ncbi.nlm.nih.gov/33668021/.

  3. Ou SH, Zell JA, Ziogas A, Anton-Culver H. Prognostic factors for survival of stage I nonsmall cell lung cancer patients : a population-based analysis of 19,702 stage I patients in the California cancer registry from 1989 to 2003. Cancer. 2007;110(7):1532–41.

    Article  PubMed  Google Scholar 

  4. Brock MV, Hooker CM, Ota-Machida E, Han Y, Guo M, Ames S, et al. DNA methylation markers and early recurrence in stage I lung cancer. N Engl J Med. 2008;358(11):1118–28.

    Article  CAS  PubMed  Google Scholar 

  5. Huang Y, Liu Z, He L, Chen X, Pan D, Ma Z, et al. Radiomics signature: a potential biomarker for the prediction of disease-free survival in early-stage (I or II) non-small cell lung cancer. Radiology. 2016;281(3):947–57.

    Article  PubMed  Google Scholar 

  6. Abbosh C, Birkbak NJ, Swanton C. Early stage NSCLC—challenges to implementing ctDNA-based screening and MRD detection. Nat Rev Clin Oncol. 2018;15(9):577–86.

    Article  CAS  PubMed  Google Scholar 

  7. Campbell JD, Alexandrov A, Kim J, Wala J, Berger AH, Pedamallu CS, et al. Distinct patterns of somatic genome alterations in lung adenocarcinomas and squamous cell carcinomas. Nat Genet. 2016;48(6):607–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Network CGAR. Comprehensive molecular profiling of lung adenocarcinoma. Nature. 2014;511(7511):543–50.

    Article  Google Scholar 

  9. Devarakonda S, Morgensztern D, Govindan R. Genomic alterations in lung adenocarcinoma. Lancet Oncol. 2015;16(7):e342–51.

    Article  CAS  PubMed  Google Scholar 

  10. Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr, Kinzler KW. Cancer genome landscapes. Science. 2013;339(6127):1546–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lafuente-Sanchis A, Zuniga A, Galbis JM, Cremades A, Estors M, Martinez-Hernandez NJ, et al. Prognostic value of ERCC1, RRM1, BRCA1 and SETDB1 in early stage of non-small cell lung cancer. Clin Transl Oncol. 2016;18(8):798–804.

    Article  CAS  PubMed  Google Scholar 

  12. Wu YL, John T, Grohe C, Majem M, Goldman JW, Kim SW, et al. Postoperative chemotherapy use and outcomes from ADAURA: osimertinib as adjuvant therapy for resected EGFR-mutated NSCLC. J Thorac Oncol. 2022;17(3):423–33.

    Article  CAS  PubMed  Google Scholar 

  13. Wang LA, Yang B, Rao W, Xiao H, Wang D, Jiang J. The correlation of BER protein, IRF3 with CD8+ T cell and their prognostic significance in upper tract urothelial carcinoma. Onco Targets Ther. 2019;12:7725–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jiao XD, Qin BD, You P, Cai J, Zang YS. The prognostic value of TP53 and its correlation with EGFR mutation in advanced non-small cell lung cancer, an analysis based on cBioPortal data base. Lung Cancer. 2018;123:70–5.

    Article  PubMed  Google Scholar 

  15. Xu JY, Zhang C, Wang X, Zhai L, Ma Y, Mao Y, et al. Integrative proteomic characterization of human lung adenocarcinoma. Cell. 2020;182(1):245-61 e17.

    Article  CAS  PubMed  Google Scholar 

  16. Chen J, Yang H, Teo ASM, Amer LB, Sherbaf FG, Tan CQ, et al. Genomic landscape of lung adenocarcinoma in East Asians. Nat Genet. 2020;52(2):177–86.

    Article  CAS  PubMed  Google Scholar 

  17. Chen YJ, Roumeliotis TI, Chang YH, Chen CT, Han CL, Lin MH, et al. Proteogenomics of non-smoking lung cancer in East Asia delineates molecular signatures of pathogenesis and progression. Cell. 2020;182(1):226-44 e17.

    Article  CAS  PubMed  Google Scholar 

  18. Nahar R, Zhai W, Zhang T, Takano A, Khng AJ, Lee YY, et al. Elucidating the genomic architecture of Asian EGFR-mutant lung adenocarcinoma through multi-region exome sequencing. Nat Commun. 2018;9(1):216.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Shaw AT, Kim DW, Nakagawa K, Seto T, Crino L, Ahn MJ, et al. Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. N Engl J Med. 2013;368(25):2385–94.

    Article  CAS  PubMed  Google Scholar 

  20. Sholl LM, Aisner DL, Varella-Garcia M, Berry LD, Dias-Santagata D, Wistuba II, et al. Multi-institutional oncogenic driver mutation analysis in lung adenocarcinoma: the lung cancer mutation consortium experience. J Thorac Oncol. 2015;10(5):768–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kim YT, Seong YW, Jung YJ, Jeon YK, Park IK, Kang CH, et al. The presence of mutations in epidermal growth factor receptor gene is not a prognostic factor for long-term outcome after surgical resection of non-small-cell lung cancer. J Thorac Oncol. 2013;8(2):171–8.

    Article  CAS  PubMed  Google Scholar 

  22. Izar B, Sequist L, Lee M, Muzikansky A, Heist R, Iafrate J, et al. The impact of EGFR mutation status on outcomes in patients with resected stage I non-small cell lung cancers. Ann Thorac Surg. 2013;96(3):962–8.

    Article  PubMed  Google Scholar 

  23. Shepherd FA, Domerg C, Hainaut P, Janne PA, Pignon JP, Graziano S, et al. Pooled analysis of the prognostic and predictive effects of KRAS mutation status and KRAS mutation subtype in early-stage resected non-small-cell lung cancer in four trials of adjuvant chemotherapy. J Clin Oncol. 2013;31(17):2173–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. D’Angelo SP, Janjigian YY, Ahye N, Riely GJ, Chaft JE, Sima CS, et al. Distinct clinical course of EGFR-mutant resected lung cancers: results of testing of 1118 surgical specimens and effects of adjuvant gefitinib and erlotinib. J Thorac Oncol. 2012;7(12):1815–22.

    Article  CAS  PubMed  Google Scholar 

  25. Izar B, Zhou H, Heist RS, Azzoli CG, Muzikansky A, Scribner EE, et al. The prognostic impact of KRAS, its codon and amino acid specific mutations, on survival in resected stage I lung adenocarcinoma. J Thorac Oncol. 2014;9(9):1363–9.

    Article  CAS  PubMed  Google Scholar 

  26. Lui VW, Grandis JR. EGFR-mediated cell cycle regulation. Anticancer Res. 2002;22(1A):1–11.

    CAS  PubMed  Google Scholar 

  27. Shelton JG, Steelman LS, Abrams SL, White ER, Akula SM, Franklin RA, et al. Conditional EGFR promotes cell cycle progression and prevention of apoptosis in the absence of autocrine cytokines. Cell Cycle. 2005;4(6):822–30.

    Article  CAS  PubMed  Google Scholar 

  28. Ohsaki Y, Tanno S, Fujita Y, Toyoshima E, Fujiuchi S, Nishigaki Y, et al. Epidermal growth factor receptor expression correlates with poor prognosis in non-small cell lung cancer patients with p53 overexpression. Oncol Rep. 2000;7(3):603–7.

    CAS  PubMed  Google Scholar 

  29. Pastorino U, Andreola S, Tagliabue E, Pezzella F, Incarbone M, Sozzi G, et al. Immunocytochemical markers in stage I lung cancer: relevance to prognosis. J Clin Oncol. 1997;15(8):2858–65.

    Article  CAS  PubMed  Google Scholar 

  30. Rusch V, Baselga J, Cordon-Cardo C, Orazem J, Zaman M, Hoda S, et al. Differential expression of the epidermal growth factor receptor and its ligands in primary non-small cell lung cancers and adjacent benign lung. Can Res. 1993;53(10 Suppl):2379–85.

    CAS  Google Scholar 

  31. Cox G, Jones JL, O’Byrne KJ. Matrix metalloproteinase 9 and the epidermal growth factor signal pathway in operable non-small cell lung cancer. Clin Cancer Res. 2000;6(6):2349–55.

    CAS  PubMed  Google Scholar 

  32. Berghmans T, Mascaux C, Martin B, Ninane V, Sculier JP. Prognostic role of p53 in stage III non-small cell lung cancer. Anticancer Res. 2005;25(3c):2385–9.

    CAS  PubMed  Google Scholar 

  33. Lai RS, Wang JS, Hsu HK, Chang HC, Lin CH, Lin MH. Prognostic evaluation of the expression of p53 and bcl-2 oncoproteins in patients with surgically resected non-small cell lung cancer. Jpn J Clin Oncol. 2002;32(10):393–7.

    Article  PubMed  Google Scholar 

  34. Dworakowska D, Gozdz S, Jassem E, Badzio A, Kobierska G, Urbaniak A, et al. Prognostic relevance of proliferating cell nuclear antigen and p53 expression in non-small cell lung cancer. Lung Cancer. 2002;35(1):35–41.

    Article  CAS  PubMed  Google Scholar 

  35. Soda M, Choi YL, Enomoto M, Takada S, Yamashita Y, Ishikawa S, et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature. 2007;448(7153):561–6.

    Article  CAS  PubMed  Google Scholar 

  36. Zhou JX, Yang H, Deng Q, Gu X, He P, Lin Y, et al. Oncogenic driver mutations in patients with non-small-cell lung cancer at various clinical stages. Ann Oncol. 2013;24(5):1319–25.

    Article  CAS  PubMed  Google Scholar 

  37. Kim MH, Shim HS, Kang DR, Jung JY, Lee CY, Kim DJ, et al. Clinical and prognostic implications of ALK and ROS1 rearrangements in never-smokers with surgically resected lung adenocarcinoma. Lung Cancer. 2014;83(3):389–95.

    Article  PubMed  Google Scholar 

  38. Gripp KW, Hopkins E, Johnston JJ, Krause C, Dobyns WB, Biesecker LG. Long-term survival in TARP syndrome and confirmation of RBM10 as the disease-causing gene. Am J Med Genet A. 2011;155A(10):2516–20.

    Article  PubMed  Google Scholar 

  39. Seiler M, Peng S, Agrawal AA, Palacino J, Teng T, Zhu P, et al. Somatic mutational landscape of splicing factor genes and their functional consequences across 33 cancer types. Cell Rep. 2018;23(1):282-96 e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhao J, Sun Y, Huang Y, Song F, Huang Z, Bao Y, et al. Functional analysis reveals that RBM10 mutations contribute to lung adenocarcinoma pathogenesis by deregulating splicing. Sci Rep. 2017;7:40488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bechara EG, Sebestyen E, Bernardis I, Eyras E, Valcarcel J. RBM5, 6, and 10 differentially regulate NUMB alternative splicing to control cancer cell proliferation. Mol Cell. 2013;52(5):720–33.

    Article  CAS  PubMed  Google Scholar 

  42. Hankey W, Frankel WL, Groden J. Functions of the APC tumor suppressor protein dependent and independent of canonical WNT signaling: implications for therapeutic targeting. Cancer Metastasis Rev. 2018;37(1):159–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ohgaki H, Kros JM, Okamoto Y, Gaspert A, Huang H, Kurrer MO. APC mutations are infrequent but present in human lung cancer. Cancer Lett. 2004;207(2):197–203.

    Article  CAS  PubMed  Google Scholar 

  44. Kim DS, Cha SI, Lee JH, Lee YM, Choi JE, Kim MJ, et al. Aberrant DNA methylation profiles of non-small cell lung cancers in a Korean population. Lung Cancer. 2007;58(1):1–6.

    Article  PubMed  Google Scholar 

  45. Brabender J, Usadel H, Danenberg KD, Metzger R, Schneider PM, Lord RV, et al. Adenomatous polyposis coli gene promoter hypermethylation in non-small cell lung cancer is associated with survival. Oncogene. 2001;20(27):3528–32.

    Article  CAS  PubMed  Google Scholar 

  46. Buscail L, Bournet B, Cordelier P. Role of oncogenic KRAS in the diagnosis, prognosis and treatment of pancreatic cancer. Nat Rev Gastroenterol Hepatol. 2020;17(3):153–68.

    Article  CAS  PubMed  Google Scholar 

  47. Li ZN, Zhao L, Yu LF, Wei MJ. BRAF and KRAS mutations in metastatic colorectal cancer: future perspectives for personalized therapy. Gastroenterol Rep (Oxf). 2020;8(3):192–205.

    Article  PubMed  Google Scholar 

  48. Skoulidis F, Li BT, Dy GK, Price TJ, Falchook GS, Wolf J, et al. Sotorasib for lung cancers with KRAS p.G12C mutation. N Engl J Med. 2021;384(25):2371–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hernandez J, Bechara E, Schlesinger D, Delgado J, Serrano L, Valcarcel J. Tumor suppressor properties of the splicing regulatory factor RBM10. RNA Biol. 2016;13(4):466.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank all the patients for providing clinical samples for this study.

Funding

This study is supported by National Natural Science Foundation of China, No. 8207112270.

Author information

Authors and Affiliations

Authors

Contributions

DW: conceived and designed the study, WR, ND, LZ, JL and BY: conducted the experiments and data analysis, LY, ML, JS and QW: provided technical support. The first draft of the manuscript was written by WR and LY on previous versions of the manuscript. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Dong Wang.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Ethical approval

The studies involving human participants were reviewed and approved by Ethics Committee of Daping Hospital (2017 number 30).

Informed consent

Due to the retrospective nature of the study, informed consent was waived.

Consent for publication

All the patients whose data were retrospectively analyzed were informed of the use of their clinical information under anonymization and received an opportunity to object to use or publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 519 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, W., Yang, L., Dai, N. et al. Frequently mutated genes in predicting the relapse of stage I lung adenocarcinoma. Clin Transl Oncol 25, 1767–1778 (2023). https://doi.org/10.1007/s12094-023-03074-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-023-03074-z

Keywords

Navigation