Skip to main content

Advertisement

Log in

Therapeutic effects of hAMSCs secretome on proliferation of MDA-MB-231 breast cancer cells by the cell cycle arrest in G1/S phase

  • RESEARCH ARTICLE
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Background

Cancer refers to a disease resulting from the uncontrolled division and growth of abnormal cells. Among different cancer types, breast cancer is considered as one of the most commonly diagnosed cancers. Herein, we explored the therapeutic effects of human amniotic mesenchymal stromal cells (hAMSCs) secretome on breast cancer cells (MDA-MB-231) through analyzing cell cycle progression.

Methods

We employed a co-culture system using 6-well Transwell plates and after 72 h, the cell cycle progression was evaluated in the hAMSCs-treated MDA-MB-231 cells through analyzing the expressions of RB, CDK4/6, cyclin D, CDK2, cyclin E, p16/INK4a, p21/WAF1/CIP1, and p27/KIP1 using quantitative real-time PCR (qRT-PCR) and western blot method. Cell proliferation, apoptosis, and cell cycle progression were checked using an MTT assay, DAPI staining, and flow cytometry.

Results

Our results indicated that elevation of RB, p21/WAF1/CIP1, and p27/KIP1 and suppression of RB hyperphosphorylation, p16/INK4a, cyclin E, cyclin D1, CDK2, and CDK4/6 may contribute to inhibiting the proliferation of hAMSCs-treated MDA-MB-231 cells through cell cycle arrest in G1/S phase followed by apoptosis.

Conclusion

hAMSCs secretome may be an effective approach on breast cancer therapy through the inhibition of cell cycle progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J CLIN. 2021;71:209–49.

    Article  PubMed  Google Scholar 

  2. Wang P, Aguirre A. New strategies and in vivo monitoring methods for stem cell-based anticancer therapies. Stem Cells Int. 2018;2018:7315218.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Francois S, Usunier B, Forgue-Lafitte ME, L’Homme B, Benderitter M, Douay L, et al. Mesenchymal stem cell administration attenuates colon cancer progression by modulating the immune component within the colorectal tumor microenvironment. Stem Cells Transl Med. 2019;8(3):285–300.

    Article  CAS  PubMed  Google Scholar 

  4. Zhang CL, Huang T, Wu BL, He WX, Liu D. Stem cells in cancer therapy: opportunities and challenges. Oncotarget. 2017;8(43):75756–66.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Sarukhan A, Zanotti L, Viola A. Mesenchymal stem cells: myths and reality. Swiss Med Wkly. 2015;145: w14229.

    PubMed  Google Scholar 

  6. Babajani A, Soltani P, Jamshidi E, Farjoo MH, Niknejad H. Recent advances on drug-loaded mesenchymal stem cells with anti-neoplastic agents for targeted treatment of cancer. Front Bioeng Biotechnol. 2020;8:748.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hmadcha A, Martin-Montalvo A, Gauthier BR, Soria B, Capilla-Gonzalez V. Therapeutic potential of mesenchymal stem cells for cancer therapy. Front Bioeng Biotechnol. 2020;8:43.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Barnum KJ, O’Connell MJ. Cell cycle regulation by checkpoints. Methods Mol Biol. 2014;1170:29–40.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Malumbres M. Cyclin-dependent kinases. Genome Biol. 2014;15:122.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Malumbres M, Harlow E, Hunt T, Hunter T, Lahti JM, Manning G, et al. Cyclin-dependent kinases: a family portrait. Nat Cell Biol. 2009;11:1275–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dick FA, Rubin SM. Molecular mechanisms underlying RB protein function. Nat Rev Mol Cell Biol. 2013;14:297–306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Burkhart DL, Sage J. Cellular mechanisms of tumour suppression by the retinoblastoma gene. Nat Rev Cancer. 2008;8:671–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Anders L, Ke N, Hydbring P, Choi YJ, Widlund HR, Chick JM, et al. A systematic screen for CDK4/6 substrates links FOXM1 phosphorylation to senescence suppression in cancer cells. Cancer Cell. 2011;20:620–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bienvenu F, Jirawatnotai S, Elias JE, Meyer CA, Mizeracka K, Marson A, et al. Transcriptional role of cyclin D1 in development revealed by a genetic-proteomic screen. Nature. 2010;463:374–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kollmann K, Heller G, Schneckenleithner C, Warsch W, Scheicher R, Ott RG, et al. A kinase-independent function of CDK6 links the cell cycle to tumor angiogenesis. Cancer Cell. 2013;24:167–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kitagawa M, Higashi H, Jung HK, Suzuki-Takahashi I, Ikeda M, Tamai K, et al. The consensus motif for phosphorylation by cyclin D1-Cdk4 is different from that for phosphorylation by cyclin A/E-Cdk2. EMBO J. 1996;15:7060–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lundberg AS, Weinberg RA. Functional inactivation of the retinoblastoma protein requires sequential modification by at least two distinct cyclin–cdk complexes. Mol Cell Biol. 1998;18:753–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hinds PW, Mittnacht S, Dulic V, Arnold A, Reed SI, Weinberg RA. Regulation of retinoblastoma protein functions by ectopic expression of human cyclins. Cell. 1992;70:993–1006.

    Article  CAS  PubMed  Google Scholar 

  19. Lukas J, Parry D, Aagaard L, Mann DJ, Bartkova J, Strauss M, et al. Retinoblastoma-protein-dependent cell-cycle inhibition by the tumour suppressor p16. Nature. 1995;375:503–6.

    Article  CAS  PubMed  Google Scholar 

  20. Network CGA. Comprehensive molecular portraits of human breast tumors. Nature. 2012;490:61–70.

    Article  Google Scholar 

  21. Rahmani Z, Safari F. Evaluating the in vitro therapeutic effects of human amniotic mesenchymal stromal cells on MiaPaca2 pancreatic cancer cells using 2D and 3D cell culture model. Tissue Cell. 2021;68: 101479.

    Article  CAS  PubMed  Google Scholar 

  22. Xiong Y, Hannon GJ, Zhang H, Casso D, Kobayashi R, Beach D. p21 is a universal inhibitor of cyclin kinases. Nature. 1993;366(6456):701–4.

    Article  CAS  PubMed  Google Scholar 

  23. Alkarain A, Jordan R, Slingerland J. p27 deregulation in breast cancer: prognostic significance and implications for therapy. J Mammary Gland Biol Neoplasia. 2004;9:67–80.

    Article  CAS  PubMed  Google Scholar 

  24. Anderson JJ, Tiniakos DG, McIntosh GG, Autzen P, Henry JA, Thomas MD, et al. Retinoblastoma protein in human breast carcinoma: immunohistochemical study using a new monoclonal antibody effective on routinely processed tissues. J Pathol. 1996;180:65–70.

    Article  CAS  PubMed  Google Scholar 

  25. Bosco EE, Knudsen ES. RB in breast cancer: at the crossroads of tumorigenesis and treatment. Cell Cycle. 2007;6:667–71.

    Article  CAS  PubMed  Google Scholar 

  26. Condorelli R, Spring L, O’Shaughnessy J, Lacroix L, Bailleux C, Scott V, et al. Polyclonal RB1 mutations and acquired resistance to CDK 4/6 inhibitors in patients with metastatic breast cancer. Ann Oncol. 2018;29:640–5.

    Article  CAS  PubMed  Google Scholar 

  27. Dyson N. The regulation of E2F by pRB-family proteins. Genes Dev. 1998;12:2245–62.

    Article  CAS  PubMed  Google Scholar 

  28. Classon M, Harlow E. The retinoblastoma tumour suppressor in development and cancer. Nat Rev Cancer. 2002;2:910–7.

    Article  CAS  PubMed  Google Scholar 

  29. Safari F, Shakery T, Sayadamin N. Evaluating the effect of secretome of human amniotic mesenchymal stromal cells on apoptosis induction and epithelial-mesenchymal transition inhibition in LNCaP prostate cancer cells based on 2D and 3D cell culture models. Cell Biochem Funct. 2021;39(6):813–20.

    Article  CAS  PubMed  Google Scholar 

  30. Ebadi Zavieh S, Safari F. The antitumor activity of hAMSCs secretome in HT-29 colon cancer cells through downregulation of EGFR/c-Src/IRTKS expression and p38/ERK1/2 phosphorylation. Cell Biochem Biophys. 2022;80(2):395–402.

    Article  CAS  PubMed  Google Scholar 

  31. Alidoust Saharkhiz Lahiji M, Safari F. Potential therapeutic effects of hAMSCs secretome on Panc1 pancreatic cancer cells through downregulation of SgK269, E-cadherin, vimentin, and snail expression. Biologicals. 2022;76:24–30.

    Article  CAS  PubMed  Google Scholar 

  32. Safari F, Shafiee Nejad N, Aghaei NA. The inhibition of Panc1 cancer cells invasion by hAMSCs secretome through suppression of tyrosine phosphorylation of SGK223 (at Y411 site), c-Src (at Y416, Y530 sites), AKT activity, and JAK1/Stat3 signaling. Med Oncol. 2022;39:28.

    Article  CAS  PubMed  Google Scholar 

  33. Shakery T, Safari F. Downregulation of Pinkbar/pAKT and MMP2/MMP9 expression in MDA-MB-231 breast cancer cells as potential targets in cancer therapy by hAMSCs secretome. Cells Tissues Organs. 2021. https://doi.org/10.1159/000520370.

    Article  PubMed  Google Scholar 

  34. Milde-Langosch K, Bamberger AM, Rieck G, Kelp B, Loning T. Overexpression of the p16 cell cycle inhibitor in breast cancer is associated with a more malignant phenotype. Breast Cancer Res Treat. 2001;67:61–70.

    Article  CAS  PubMed  Google Scholar 

  35. Shan M, Zhang X, Liu X, Qin Y, Liu T, Liu Y, et al. P16 and P53 play distinct roles in different subtypes of breast cancer. PLoS One. 2013;8(10): e76408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Abukhdeir AM, Park BH. P21 and p27: roles in carcinogenesis and drug resistance. Expert Rev Mol Med. 2008;10:e19.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Chen D, Liu S, Ma H, Liang X, Ma H, Yan X, et al. Paracrine factors from adiposemesenchymal stem cells enhance metastatic capacity through Wnt signaling pathway in a colon cancer cell co-culture model. Cancer Cell Int. 2015;15:42.

    Article  PubMed  PubMed Central  Google Scholar 

  38. So KA, Min KJ, Hong JH, Lee JK. Interleukin-6 expression by interactions between gynecologic cancer cells and human mesenchymal stem cells promotes epithelial-mesenchymal transition. Int J Oncol. 2015;47:1451–2145.

    Article  CAS  PubMed  Google Scholar 

  39. Ma F, Chen D, Chen F, Chi Y, Han Z, Feng X, et al. Human umbilical cord mesenchymal stem cells promote breast cancer metastasis by interleukin-8- and interleukin-6-dependent induction of CD44+/CD24− cells. Cell Transplant. 2015;24:2585–99.

    Article  PubMed  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatemeh Safari.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Research involving human participants and/or animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Formal consent is not required for this type of study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahimi Lifshagerd, M., Safari, F. Therapeutic effects of hAMSCs secretome on proliferation of MDA-MB-231 breast cancer cells by the cell cycle arrest in G1/S phase. Clin Transl Oncol 25, 1702–1709 (2023). https://doi.org/10.1007/s12094-022-03067-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-022-03067-4

Keywords

Navigation