Skip to main content

Advertisement

Log in

Platelet-derived microvesicles (PMVs) in cancer progression and clinical applications

  • REVIEW ARTICLE
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Platelet-derived microvesicles (PMVs), the microvesicles with the highest concentration in the bloodstream, play a key role in the regulation of hemostasis, inflammation, and angiogenesis. PMVs have recently been identified as key factors in the link between platelets and cancer. PMVs bind to both cancer cells and nontransformed cells in the microenvironment of the tumor, and then transfer platelet-derived contents to the target cell. These contents have the potential to either stimulate or modulate the target cell's response. PMVs are encased in a lipid bilayer that contains surface proteins and lipids as well as components found inside the PMV. Each of these components participates in known and potential PMV roles in cancer. The complicated roles played by PMVs in the onset, development, and progression of cancer and cancer-related comorbidities are summarized in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Gurbel PA, Jeong Y-H, Navarese EP, Tantry US. Platelet-mediated thrombosis: from bench to bedside. Circ Res. 2016;118(9):1380–91.

    Article  CAS  PubMed  Google Scholar 

  2. Schwertz H, Rowley JW, Tolley ND, Campbell RA, Weyrich AS. Assessing protein synthesis by platelets. Platelets and Megakaryocytes: Springer; 2012. p. 141–53.

    Google Scholar 

  3. Zaldivia MTK, McFadyen JD, Lim B, Wang X, Peter K. Platelet-derived microvesicles in cardiovascular diseases. Front Cardiovasc Med. 2017;4:74.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Aatonen MT, Öhman T, Nyman TA, Laitinen S, Grönholm M, Siljander PR-M. Isolation and characterization of platelet-derived extracellular vesicles. J Extracell Vesicl. 2014;3(1):24692.

    Article  Google Scholar 

  5. Tafelmeier M, Fischer A, Orso E, Konovalova T, Böttcher A, Liebisch G, et al. Mildly oxidized HDL decrease agonist-induced platelet aggregation and release of pro-coagulant platelet extracellular vesicles. J Steroid Biochem Mol Biol. 2017;169:176–88.

    Article  CAS  PubMed  Google Scholar 

  6. Liu Q, Peng H, Wang Z-A. Convergence to nonlinear diffusion waves for a hyperbolic-parabolic chemotaxis system modelling vasculogenesis. J Differential Equations. 2022;314:251–86.

    Article  Google Scholar 

  7. Théry C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracellul Vesic. 2018;7(1):1535750.

    Article  Google Scholar 

  8. Żmigrodzka M, Witkowska-Piłaszewicz O, Winnicka A. Platelets extracellular vesicles as regulators of cancer progression—an updated perspective. Int J Mol Sci. 2020;21(15):5195.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lazar S, Goldfinger LE. Platelet microparticles and miRNA transfer in cancer progression: many targets, modes of action, and effects across cancer stages. Front Cardiovasc Med. 2018;5:13.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Italiano JE Jr, Mairuhu AT, Flaumenhaft R. Clinical relevance of microparticles from platelets and megakaryocytes. Curr Opin Hematol. 2010;17(6):578.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Wolf P. The nature and significance of platelet products in human plasma. Br J Haematol. 1967;13(3):269–88.

    Article  CAS  PubMed  Google Scholar 

  12. Warren B, Vales O. The release of vesicles from platelets following adhesion to vessel walls in vitro. Br J Exp Pathol. 1972;53(2):206.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Heijnen HF, Schiel AE, Fijnheer R, Geuze HJ, Sixma JJ. Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and-granules. Blood J Am Soc Hematol. 1999;94(11):3791–9.

    CAS  Google Scholar 

  14. Dovizio M, Alberti S, Sacco A, Guillem-Llobat P, Schiavone S, Maier TJ, et al. Novel insights into the regulation of cyclooxygenase-2 expression by platelet-cancer cell cross-talk. Biochem Soc Trans. 2015;43(4):707–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Antwi-Baffour S, Adjei J, Aryeh C, Kyeremeh R, Kyei F, Seidu MA. Understanding the biosynthesis of platelets-derived extracellular vesicles. Immun Inflamm Dis. 2015;3(3):133–40.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Biró É, Akkerman JWN, Hoek FJ, Gorter G, Pronk LM, Sturk A, et al. The phospholipid composition and cholesterol content of platelet-derived microparticles: a comparison with platelet membrane fractions. J Thromb Haemost. 2005;3(12):2754–63.

    Article  PubMed  Google Scholar 

  17. Garcia BA, Smalley DM, Cho H, Shabanowitz J, Ley K, Hunt DF. The platelet microparticle proteome. J Proteome Res. 2005;4(5):1516–21.

    Article  CAS  PubMed  Google Scholar 

  18. Azadeh H, Alizadeh-Navaei R, Rezaiemanesh A, Rajabinejad M. Immune-related adverse events (irAEs) in ankylosing spondylitis (AS) patients treated with interleukin (IL)-17 inhibitors: a systematic review and meta-analysis. Inflammopharmacol. 2022;30(2):435-451

  19. Mobarrez F, Sjövik C, Soop A, Hållström L, Frostell C, Pisetsky DS, et al. CD40L expression in plasma of volunteers following LPS administration: a comparison between assay of CD40L on platelet microvesicles and soluble CD40L. Platelets. 2015;26(5):486–90.

    Article  CAS  PubMed  Google Scholar 

  20. Pan Y, Liang H, Liu H, Li D, Chen X, Li L, et al. Platelet-secreted microRNA-223 promotes endothelial cell apoptosis induced by advanced glycation end products via targeting the insulin-like growth factor 1 receptor. J Immunol. 2014;192(1):437–46.

    Article  CAS  PubMed  Google Scholar 

  21. Liang H, Yan X, Pan Y, Wang Y, Wang N, Li L, et al. MicroRNA-223 delivered by platelet-derived microvesicles promotes lung cancer cell invasion via targeting tumor suppressor EPB41L3. Mol Cancer. 2015;14(1):1–13.

    Article  CAS  Google Scholar 

  22. Boudreau LH, Duchez A-C, Cloutier N, Soulet D, Martin N, Bollinger J, et al. Platelets release mitochondria serving as substrate for bactericidal group IIA-secreted phospholipase A2 to promote inflammation. Blood J Am Soc Hematol. 2014;124(14):2173–83.

    CAS  Google Scholar 

  23. Xu S, Tao H, Cao W, Cao L, Lin Y, Zhao S-M, et al. Ketogenic diets inhibit mitochondrial biogenesis and induce cardiac fibrosis. Signal Transduct Target Ther. 2021;6(1):1–13.

    Google Scholar 

  24. Milioli M, Ibáñez-Vea M, Sidoli S, Palmisano G, Careri M, Larsen MR. Quantitative proteomics analysis of platelet-derived microparticles reveals distinct protein signatures when stimulated by different physiological agonists. J Proteomics. 2015;121:56–66.

    Article  CAS  PubMed  Google Scholar 

  25. Janowska-Wieczorek A, Wysoczynski M, Kijowski J, Marquez-Curtis L, Machalinski B, Ratajczak J, et al. Microvesicles derived from activated platelets induce metastasis and angiogenesis in lung cancer. Int J Cancer. 2005;113(5):752–60.

    Article  CAS  PubMed  Google Scholar 

  26. Qu Y-Y, Zhao R, Zhang H-L, Zhou Q, Xu F-J, Zhang X, et al. Inactivation of the AMPK–GATA3–ECHS1 pathway induces fatty acid synthesis that promotes clear cell renal cell carcinoma growth. Can Res. 2020;80(2):319–33.

    Article  CAS  Google Scholar 

  27. Duan C, Deng H, Xiao S, Xie J, Li H, Zhao X, et al. Accelerate gas diffusion-weighted MRI for lung morphometry with deep learning. Eur Radiol. 2022;32(1):702–13.

    Article  PubMed  Google Scholar 

  28. Labelle M, Begum S, Hynes RO. Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis. Cancer Cell. 2011;20(5):576–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Luo K. Signaling cross talk between TGF-β/Smad and other signaling pathways. Cold Spring Harb Perspect Biol. 2017;9:1.

    Article  Google Scholar 

  30. Guo S-C, Tao S-C, Yin W-J, Qi X, Yuan T, Zhang C-Q. Exosomes derived from platelet-rich plasma promote the re-epithelization of chronic cutaneous wounds via activation of YAP in a diabetic rat model. Theranostics. 2017;7(1):81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. van Es N, Sturk A, Middeldorp S, Nieuwland R. Effects of cancer on platelets. Semin Oncol. 2014;41(3):311–8.

    Article  PubMed  Google Scholar 

  32. Mooberry MJ, Key NS. Microparticle analysis in disorders of hemostasis and thrombosis. Cytometry A. 2016;89(2):111–22.

    Article  CAS  PubMed  Google Scholar 

  33. Sinauridze EI, Kireev DA, Popenko NY, Pichugin AV, Panteleev MA, Krymskaya OV, et al. Platelet microparticle membranes have 50-to 100-fold higher specific procoagulant activity than activated platelets. Thromb Haemost. 2007;97(03):425–34.

    Article  CAS  PubMed  Google Scholar 

  34. Hisada Y, Mackman N. Cancer-associated pathways and biomarkers of venous thrombosis. Blood J Am Soc Hematol. 2017;130(13):1499–506.

    CAS  Google Scholar 

  35. Geddings JE, Mackman N. Tumor-derived tissue factor–positive microparticles and venous thrombosis in cancer patients. Blood J Am Soc Hematol. 2013;122(11):1873–80.

    CAS  Google Scholar 

  36. Liu H, Gao Y, Vafaei S, Gu X, Zhong X. The prognostic value of plasma cell-free DNA concentration in the prostate cancer: a systematic review and meta-analysis. Front Oncol. 2021;11: 599602.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hernández C, Orbe J, Roncal C, Alvarez-Hernandez M, de Lizarrondo SM, Alves MT, et al. Tissue factor expressed by microparticles is associated with mortality but not with thrombosis in cancer patients. Thromb Haemost. 2013;110(09):598–608.

    Article  PubMed  Google Scholar 

  38. Zwicker JI, Lacroix R, Dignat-George F, Furie BC, Furie B. Measurement of platelet microparticles. Platelets and Megakaryocytes: Springer; 2012. p. 127–39.

    Google Scholar 

  39. Levi M. Disseminated intravascular coagulation in cancer patients. Best Pract Res Clin Haematol. 2009;22(1):129–36.

    Article  PubMed  Google Scholar 

  40. Tabib A, Khorgami MR, Meraji M, Omidi N, Mirmesdagh Y. Accuracy of Doppler-derived indices in predicting pulmonary vascular resistance in children with pulmonary hypertension secondary to congenital heart disease with left-to-right shunting. Pediatr Cardiol. 2014;35(3):521–9.

    Article  PubMed  Google Scholar 

  41. Levi M, editor Disseminated intravascular coagulation in cancer: an update. Semin Thromb Hemost. 2019 ;45(4):342-347

  42. Zhang X, Liu L, Chen WC, Wang F, Cheng YR, Liu YM, et al. Gestational Leucylation Suppresses Embryonic T‐Box Transcription Factor 5 Signal and Causes Congenital Heart Disease. Adv Sci. 2022; 9(15): 2201034.

  43. Khorgami MR, Moradian M, Omidi N, Moghadam MYA. Management of cardiovascular disorders in patients with Noonan Syndrome: a case report. J Tehr Univ Heart Center. 2017;12(4):184.

    Google Scholar 

  44. Kim AS, Khorana AA, McCrae KR. Mechanisms and biomarkers of cancer-associated thrombosis. Transl Res. 2020;225:33-53.

  45. Yamanaka Y, Sawai Y, Nomura S. Platelet-derived microparticles are an important biomarker in patients with cancer-associated thrombosis. Int J Gen Med. 2019;12:491.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Algra AM, Rothwell PM. Effects of regular aspirin on long-term cancer incidence and metastasis: a systematic comparison of evidence from observational studies versus randomised trials. Lancet Oncol. 2012;13(5):518–27.

    Article  CAS  PubMed  Google Scholar 

  47. Gay LJ, Felding-Habermann B. Contribution of platelets to tumour metastasis. Nat Rev Cancer. 2011;11(2):123–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Goubran HA, Kotb RR, Stakiw J, Emara ME, Burnouf T. Regulation of tumor growth and metastasis: the role of tumor microenvironment. Cancer Growth Metast. 2014;7:11285.

    Article  Google Scholar 

  49. Montoro-García S, Shantsila E, Hernández-Romero D, Jover E, Valdés M, Marín F, et al. Small-size platelet microparticles trigger platelet and monocyte functionality and modulate thrombogenesis via P-selectin. Br J Haematol. 2014;166(4):571–80.

    Article  PubMed  Google Scholar 

  50. Domanska UM, Kruizinga RC, Nagengast WB, Timmer-Bosscha H, Huls G, de Vries EG, et al. A review on CXCR4/CXCL12 axis in oncology: no place to hide. Eur J Cancer. 2013;49(1):219–30.

    Article  CAS  PubMed  Google Scholar 

  51. Hao P, Li H, Zhou L, Sun H, Han J, Zhang Z. Serum metal ion-induced cross-linking of photoelectrochemical peptides and circulating proteins for evaluating cardiac ischemia/reperfusion. ACS Sens. 2022;7(3):775–83.

    Article  CAS  PubMed  Google Scholar 

  52. Wang D, Wang F, Shi K-H, Tao H, Li Y, Zhao R, et al. Lower circulating folate induced by a fidgetin intronic variant is associated with reduced congenital heart disease susceptibility. Circulation. 2017;135(18):1733–48.

    Article  CAS  PubMed  Google Scholar 

  53. Manoochehrabadi T, Sharifi Z, Yari F. Role of platelet-derived microparticles in transfer of the chemokine receptor CXCR4 to CXCR4-negative cells. Med J Islam Repub Iran. 2019;33:55.

    PubMed  PubMed Central  Google Scholar 

  54. Dashevsky O, Varon D, Brill A. Platelet-derived microparticles promote invasiveness of prostate cancer cells via upregulation of MMP-2 production. Int J Cancer. 2009;124(8):1773–7.

    Article  CAS  PubMed  Google Scholar 

  55. Milasan A, Tessandier N, Tan S, Brisson A, Boilard E, Martel C. Extracellular vesicles are present in mouse lymph and their level differs in atherosclerosis. J Extracell Vesicl. 2016;5(1):31427.

    Article  Google Scholar 

  56. Hayon Y, Dashevsky O, Shai E, Brill A, Varon D, Leker R, R,. Platelet microparticles induce angiogenesis and neurogenesis after cerebral ischemia. Curr Neurovasc Res. 2012;9(3):185–92.

    Article  CAS  PubMed  Google Scholar 

  57. Gawaz M, Langer H, May AE. Platelets in inflammation and atherogenesis. J Clin Investig. 2005;115(12):3378–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Samimi Z, Kardideh B, Zafari P, Bahrehmand F, Roghani SA, Taghadosi M. The impaired gene expression of adenosine monophosphate-activated kinase (AMPK), a key metabolic enzyme in leukocytes of newly diagnosed rheumatoid arthritis patients. Mol Biol Rep. 2019;46(6):6353–60.

    Article  CAS  PubMed  Google Scholar 

  59. Servais L, Wéra O, DibatoEpoh J, Delierneux C, Bouznad N, Rahmouni S, et al. Platelets contribute to the initiation of colitis-associated cancer by promoting immunosuppression. J Thromb Haemost. 2018;16(4):762–77.

    Article  CAS  PubMed  Google Scholar 

  60. Muralidharan-Chari V, Clancy JW, Sedgwick A, D’Souza-Schorey C. Microvesicles: mediators of extracellular communication during cancer progression. J Cell Sci. 2010;123(10):1603–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gao Y, Chen S, Vafaei S, Zhong X. Tumor-infiltrating immune cell signature predicts the prognosis and chemosensitivity of patients with pancreatic ductal adenocarcinoma. Front Oncol. 2020;10: 557638.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Boilard E, Nigrovic PA, Larabee K, Watts GF, Coblyn JS, Weinblatt ME, et al. Platelets amplify inflammation in arthritis via collagen-dependent microparticle production. Science. 2010;327(5965):580–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Iranshahi N, Assar S, Amiri SM, Zafari P, Fekri A, Taghadosi M. Decreased gene expression of Epstein-Barr Virus-Induced Gene 3 (EBI-3) may contribute to the pathogenesis of rheumatoid arthritis. Immunol Invest. 2019;48(4):367–77.

    Article  CAS  PubMed  Google Scholar 

  64. McGregor L, Martin J, McGregor JL. Platelet-leukocyte aggregates and derived microparticles in inflammation, vascular remodelling and thrombosis. Front Biosci Landmark. 2006;11(1):830–7.

    Article  CAS  Google Scholar 

  65. Zafari P, Yari K, Mostafaei S, Iranshahi N, Assar S, Fekri A, et al. Analysis of Helios gene expression and Foxp3 TSDR methylation in the newly diagnosed Rheumatoid Arthritis patients. Immunol Invest. 2018;47(6):632–42.

    Article  CAS  PubMed  Google Scholar 

  66. Sadallah S, Eken C, Martin PJ, Schifferli JA. Microparticles (ectosomes) shed by stored human platelets downregulate macrophages and modify the development of dendritic cells. J Immunol. 2011;186(11):6543–52.

    Article  CAS  PubMed  Google Scholar 

  67. Kim H, Song K, Park Y, Kang Y, Lee Y, Lee K, et al. Elevated levels of circulating platelet microparticles, VEGF, IL-6 and RANTES in patients with gastric cancer: possible role of a metastasis predictor. Eur J Cancer. 2003;39(2):184–91.

    Article  CAS  PubMed  Google Scholar 

  68. Mege D, Panicot-Dubois L, Ouaissi M, Robert S, Sielezneff I, Sastre B, et al. The origin and concentration of circulating microparticles differ according to cancer type and evolution: a prospective single-center study. Int J Cancer. 2016;138(4):939–48.

    Article  CAS  PubMed  Google Scholar 

  69. Wang C-C, Tseng C-C, Chang H-C, Huang K-T, Fang W-F, Chen Y-M, et al. Circulating microparticles are prognostic biomarkers in advanced non-small cell lung cancer patients. Oncotarget. 2017;8(44):75952.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Edelstein LC. The role of platelet microvesicles in intercellular communication. Platelets. 2017;28(3):222–7.

    Article  CAS  PubMed  Google Scholar 

  71. Ambrose AR, Alsahli MA, Kurmani SA, Goodall AH. Comparison of the release of microRNAs and extracellular vesicles from platelets in response to different agonists. Platelets. 2018;29(5):446–54.

    Article  CAS  PubMed  Google Scholar 

  72. Rajabinejad M, Asadi G, Ranjbar S, Varmaziar FR, Karimi M, Salari F, et al. The MALAT1-H19/miR-19b-3p axis can be a fingerprint for diabetic neuropathy. Immunol Lett. 2022;245:69–78.

    Article  CAS  PubMed  Google Scholar 

  73. Zhang Y, Zhang W, Zha C, Liu Y. Platelets activated by the anti-β2GPI/β2GPI complex release microRNAs to inhibit migration and tube formation of human umbilical vein endothelial cells. Cell Mol Biol Lett. 2018;23(1):1–10.

    Article  CAS  Google Scholar 

  74. Michael JV, Wurtzel JG, Mao GF, Rao AK, Kolpakov MA, Sabri A, et al. Platelet microparticles infiltrating solid tumors transfer miRNAs that suppress tumor growth. Blood J Am Soc Hematol. 2017;130(5):567–80.

    CAS  Google Scholar 

  75. Tran JQ, Pedersen OH, Larsen ML, Grove EL, Kristensen SD, Hvas A-M, et al. Platelet microRNA expression and association with platelet maturity and function in patients with essential thrombocythemia. Platelets. 2020;31(3):365–72.

    Article  CAS  PubMed  Google Scholar 

  76. Lai W-F. Development of hydrogels with self-healing properties for delivery of bioactive agents. Mol Pharm. 2021;18(5):1833–41.

    Article  CAS  PubMed  Google Scholar 

  77. Lai W-F, Wong W-T. Property-tuneable microgels fabricated by using flow-focusing microfluidic geometry for bioactive agent delivery. Pharmaceutics. 2021;13(6):787.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Boilard E. Extracellular vesicles and their content in bioactive lipid mediators: more than a sack of microRNA. J Lipid Res. 2018;59(11):2037–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Tan AS, Baty JW, Dong L-F, Bezawork-Geleta A, Endaya B, Goodwin J, et al. Mitochondrial genome acquisition restores respiratory function and tumorigenic potential of cancer cells without mitochondrial DNA. Cell Metab. 2015;21(1):81–94.

    Article  CAS  PubMed  Google Scholar 

  80. Li Y, Yao C-F, Xu F-J, Qu Y-Y, Li J-T, Lin Y, et al. APC/CCDH1 synchronizes ribose-5-phosphate levels and DNA synthesis to cell cycle progression. Nat Commun. 2019;10(1):1–16.

    Google Scholar 

  81. Wang D, Zhao R, Qu Y-Y, Mei X-Y, Zhang X, Zhou Q, et al. Colonic lysine homocysteinylation induced by high-fat diet suppresses DNA damage repair. Cell Rep. 2018;25(2):398–412.

    Article  CAS  PubMed  Google Scholar 

  82. Yao B, Qu S, Hu R, Gao W, Jin S, Ju J, et al. Delivery of platelet TPM3 mRNA into breast cancer cells via microvesicles enhances metastasis. FEBS Open Bio. 2019;9(12):2159–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Yang W, Liu W, Li X, Yan J, He W (2022). Turning chiral peptides into a racemic supraparticle to induce the self-degradation of MDM2. J Adv Res

  84. Denis MM, Tolley ND, Bunting M, Schwertz H, Jiang H, Lindemann S, et al. Escaping the nuclear confines: signal-dependent pre-mRNA splicing in anucleate platelets. Cell. 2005;122(3):379–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Simon LM, Edelstein LC, Nagalla S, Woodley AB, Chen ES, Kong X, et al. Human platelet microRNA-mRNA networks associated with age and gender revealed by integrated plateletomics. Blood J Am Soc Hematol. 2014;123(16):e37–45.

    CAS  Google Scholar 

  86. Lopez E, Srivastava AK, Burchfield J, Wang Y-W, Cardenas JC, Togarrati PP, et al. Platelet-derived-extracellular vesicles promote hemostasis and prevent the development of hemorrhagic shock. Sci Rep. 2019;9(1):1–10.

    Article  Google Scholar 

  87. Agrahari V, Agrahari V, Burnouf PA, Chew CH, Burnouf T. Extracellular microvesicles as new industrial therapeutic frontiers. Trends Biotechnol. 2019;37(7):707–29.

    Article  CAS  PubMed  Google Scholar 

  88. Mathieu M, Martin-Jaular L, Lavieu G, Théry C. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat Cell Biol. 2019;21(1):9–17.

    Article  CAS  PubMed  Google Scholar 

  89. Kong L, Li K, Gao L, Yin A, Zhou L, Teng G, et al. Mediating effects of platelet-derived extracellular vesicles on PM(2.5)-induced vascular endothelial injury. Ecotoxicol Environ Saf. 2020;198:110652.

    Article  CAS  PubMed  Google Scholar 

  90. Burnouf T, Goubran HA, Chou ML, Devos D, Radosevic M. Platelet microparticles: detection and assessment of their paradoxical functional roles in disease and regenerative medicine. Blood Rev. 2014;28(4):155–66.

    Article  CAS  PubMed  Google Scholar 

  91. Ponomareva A, Nevzorova T, Mordakhanova E, Andrianova I, Rauova L, Litvinov R, et al. Intracellular origin and ultrastructure of platelet-derived microparticles. J Thromb Haemost. 2017;15(8):1655–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Lopez E, Srivastava AK, Pati S, Holcomb JB, Wade CE. Platelet-derived microvesicles: a potential therapy for trauma-induced coagulopathy. Shock. 2018;49(3):243–8.

    Article  PubMed  Google Scholar 

Download references

Funding

This study was supported by grants from the Natural Science Foundation of Zhejiang Province (LGF22H080009).

Author information

Authors and Affiliations

Authors

Contributions

Y.P, Zh.L, and Y.H., contributed to the idea design and literature search. Yi.W., M.H., and Ya.W, wrote parts of the manuscript. Sh.X., and F.J. contributed to designing the figure.

Corresponding author

Correspondence to Zhiwei Liu.

Ethics declarations

Conflict of interest

None.

Ethical approval

It is not applicable.

Informed consent

It is not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, Y., Wang, Y., Wang, Y. et al. Platelet-derived microvesicles (PMVs) in cancer progression and clinical applications. Clin Transl Oncol 25, 873–881 (2023). https://doi.org/10.1007/s12094-022-03014-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-022-03014-3

Keywords

Navigation