Skip to main content

Advertisement

Log in

The application of tumor cell-derived vesicles in oncology therapy

  • Review Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Tumor cell-derived vesicles are released by tumor cells, have a phospholipid bilayer, and are widely distributed in various biological fluids. In recent years, it has been found that tumor cell-derived vesicles contain proteins, metabolites and nucleic acids and can be delivered to recipient cells to perform their physiological functions, such as mediating specific intercellular communication, activating or inhibiting signaling pathways, participating in regulating the modulation of tumor microenvironment and influencing tumor development, which can be used for early detection and diagnosis of cancer. In addition, tumor cell-derived vesicles exhibit multiple properties in tumor therapeutic applications and may serve as a new class of delivery systems. In this review, we elaborate on the application of tumor cell-derived vesicles in oncology therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lv TR, Hu HJ, Regmi P, Liu F, Li FY. Sarcomatoid hepatocellular carcinoma versus conventional hepatocellular carcinoma: a systematic review and meta-analysis. J Cancer Res Clin Oncol. 2022. https://doi.org/10.1007/s00432-022-03949-8.

    Article  Google Scholar 

  2. Luo H, Tang L, Tang M, Billam M, Huang T, Yu J, et al. Phase IIa chemoprevention trial of green tea polyphenols in high-risk individuals of liver cancer: modulation of urinary excretion of green tea polyphenols and 8-hydroxydeoxyguanosine. Carcinogenesis(2006) 27(2):262–8. https://doi.org/10.1093/carcin/bgi147.

    Article  Google Scholar 

  3. Rossi GR, Trindade ES, Souza-Fonseca-Guimaraes F. Tumor microenvironment-associated extracellular matrix components regulate Nk cell function. Front Immunol. 2020;11:73. https://doi.org/10.3389/fimmu.2020.00073.

    Article  CAS  Google Scholar 

  4. Fang F, Zhang T, Li Q, Chen X, Jiang F, Shen X. The tumor immune-microenvironment in gastric cancer. Tumori. 2022. https://doi.org/10.1177/03008916211070051.

    Article  Google Scholar 

  5. Giordano C, La Camera G, Gelsomino L, Barone I, Bonofiglio D, Ando S, et al. The biology of exosomes in breast cancer progression: dissemination, immune evasion and metastatic colonization. Cancers (Basel). 2020. https://doi.org/10.3390/cancers12082179.

    Article  Google Scholar 

  6. Thery C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, et al. Minimal information for studies of extracellular vesicles 2018 (Misev2018): a position statement of the international society for extracellular vesicles and update of the Misev 2014 guidelines. J Extracell Vesicles. 2018;7(1):1535750. https://doi.org/10.1080/20013078.2018.1535750.

    Article  Google Scholar 

  7. Ma J, Zhang H, Tang K, Huang B. Tumor-derived microparticles in tumor immunology and immunotherapy. Eur J Immunol. 2020;50(11):1653–62. https://doi.org/10.1002/eji.202048548.

    Article  CAS  Google Scholar 

  8. Thery C, Zitvogel L, Amigorena S. Exosomes: composition, biogenesis and function. Nat Rev Immunol. 2002;2(8):569–79. https://doi.org/10.1038/nri855.

    Article  CAS  Google Scholar 

  9. Anand S, Samuel M, Mathivanan S. Exomeres: a new member of extracellular vesicles family. Subcell Biochem. 2021;97:89–97. https://doi.org/10.1007/978-3-030-67171-6_5.

    Article  CAS  Google Scholar 

  10. Lu L, Huang J, Mo J, Da X, Li Q, Fan M, et al. Exosomal lncrna Tug1 from cancer-associated fibroblasts promotes liver cancer cell migration, invasion, and glycolysis by regulating the Mir-524–5p/Six1 Axis. Cell Mol Biol Lett. 2022;27(1):17. https://doi.org/10.1186/s11658-022-00309-9.

    Article  CAS  Google Scholar 

  11. Kahlert C, Kalluri R. Exosomes in tumor microenvironment influence cancer progression and metastasis. J Mol Med (Berl). 2013;91(4):431–7. https://doi.org/10.1007/s00109-013-1020-6.

    Article  CAS  Google Scholar 

  12. Scavo MP, Depalo N, Tutino V, De Nunzio V, Ingrosso C, Rizzi F, et al. Exosomes for diagnosis and therapy in gastrointestinal cancers. Int J Mol Sci. 2020. https://doi.org/10.3390/ijms21010367.

    Article  Google Scholar 

  13. Fu M, Gu J, Jiang P, Qian H, Xu W, Zhang X. Exosomes in gastric cancer: roles, mechanisms, and applications. Mol Cancer. 2019;18(1):41. https://doi.org/10.1186/s12943-019-1001-7.

    Article  Google Scholar 

  14. Wang S, Wang J, Wei W, Ma G. Exosomes: the indispensable messenger in tumor pathogenesis and the rising star in antitumor applications. Adv Biosyst. 2019;3(5):e1900008. https://doi.org/10.1002/adbi.201900008.

    Article  Google Scholar 

  15. Kim YS, Ahn JS, Kim S, Kim HJ, Kim SH, Kang JS. The potential theragnostic (diagnostic+therapeutic) application of exosomes in diverse biomedical fields. Korean J Physiol Pharmacol. 2018;22(2):113–25. https://doi.org/10.4196/kjpp.2018.22.2.113.

    Article  CAS  Google Scholar 

  16. Zhang X, Shi H, Yuan X, Jiang P, Qian H, Xu W. Tumor-derived exosomes induce N2 polarization of neutrophils to promote gastric cancer cell migration. Mol Cancer. 2018;17(1):146. https://doi.org/10.1186/s12943-018-0898-6.

    Article  CAS  Google Scholar 

  17. Wang S, Xu M, Li X, Su X, Xiao X, Keating A, et al. Exosomes released by hepatocarcinoma cells endow adipocytes with tumor-promoting properties. J Hematol Oncol. 2018;11(1):82. https://doi.org/10.1186/s13045-018-0625-1.

    Article  CAS  Google Scholar 

  18. Zhang L, Yu D. Exosomes in cancer development, metastasis, and immunity. Biochim Biophys Acta Rev Cancer. 2019;1871(2):455–68. https://doi.org/10.1016/j.bbcan.2019.04.004.

    Article  CAS  Google Scholar 

  19. Tian F, Zhang S, Liu C, Han Z, Liu Y, Deng J, et al. Protein analysis of extracellular vesicles to monitor and predict therapeutic response in metastatic breast cancer. Nat Commun. 2021;12(1):2536. https://doi.org/10.1038/s41467-021-22913-7.

    Article  CAS  Google Scholar 

  20. Srivastava A, Amreddy N, Razaq M, Towner R, Zhao YD, Ahmed RA, et al. Exosomes as theranostics for lung cancer. Adv Cancer Res. 2018;139:1–33. https://doi.org/10.1016/bs.acr.2018.04.001.

    Article  CAS  Google Scholar 

  21. Mannavola F, D’Oronzo S, Cives M, Stucci LS, Ranieri G, Silvestris F, et al. Extracellular vesicles and epigenetic modifications are hallmarks of melanoma progression. Int J Mol Sci. 2019. https://doi.org/10.3390/ijms21010052.

    Article  Google Scholar 

  22. Kugeratski FG, Kalluri R. Exosomes as mediators of immune regulation and immunotherapy in cancer. Febs J. 2021;288(1):10–35. https://doi.org/10.1111/febs.15558.

    Article  CAS  Google Scholar 

  23. Ren J, He W, Zheng L, Duan H. From structures to functions: insights into exosomes as promising drug delivery vehicles. Biomater Sci. 2016;4(6):910–21. https://doi.org/10.1039/c5bm00583c.

    Article  CAS  Google Scholar 

  24. Taylor DD, Shah S. Methods of isolating extracellular vesicles impact down-stream analyses of their cargoes. Methods. 2015;87:3–10. https://doi.org/10.1016/j.ymeth.2015.02.019.

    Article  CAS  Google Scholar 

  25. Wang JM, Li YJ, Wu JY, Cai JX, Wen J, Xiang DX, et al. Comparative evaluation of methods for isolating small extracellular vesicles derived from pancreatic cancer cells. Cell Biosci. 2021;11(1):37. https://doi.org/10.1186/s13578-021-00550-3.

    Article  CAS  Google Scholar 

  26. Lane RE, Korbie D, Anderson W, Vaidyanathan R, Trau M. Analysis of exosome purification methods using a model liposome system and tunable-resistive pulse sensing. Sci Rep. 2015;5:7639. https://doi.org/10.1038/srep07639.

    Article  CAS  Google Scholar 

  27. Dai Y, Gao X. Inhibition of cancer cell-derived exosomal Microrna-183 suppresses cell growth and metastasis in prostate cancer by upregulating Tpm1. Cancer Cell Int. 2021;21(1):145. https://doi.org/10.1186/s12935-020-01686-x.

    Article  CAS  Google Scholar 

  28. Yang L, Wu XH, Wang D, Luo CL, Chen LX. Bladder cancer cell-derived exosomes inhibit tumor cell apoptosis and induce cell proliferation in vitro. Mol Med Rep. 2013;8(4):1272–8. https://doi.org/10.3892/mmr.2013.1634.

    Article  CAS  Google Scholar 

  29. Deng M, Yuan H, Liu S, Hu Z, Xiao H. Exosome-transmitted Linc00461 promotes multiple myeloma cell proliferation and suppresses apoptosis by modulating microrna/Bcl-2 expression. Cytotherapy. 2019;21(1):96–106. https://doi.org/10.1016/j.jcyt.2018.10.006.

    Article  CAS  Google Scholar 

  30. Zhu W, Huang L, Li Y, Zhang X, Gu J, Yan Y, et al. Exosomes derived from human bone marrow mesenchymal stem cells promote tumor growth in vivo. Cancer Lett. 2012;315(1):28–37. https://doi.org/10.1016/j.canlet.2011.10.002.

    Article  CAS  Google Scholar 

  31. Qin F, Tang H, Zhang Y, Zhang Z, Huang P, Zhu J. Bone marrow-derived mesenchymal stem cell-derived exosomal microrna-208a promotes osteosarcoma cell proliferation, migration, and invasion. J Cell Physiol. 2020;235(5):4734–45. https://doi.org/10.1002/jcp.29351.

    Article  CAS  Google Scholar 

  32. Xu H, Zhao G, Zhang Y, Jiang H, Wang W, Zhao D, et al. Mesenchymal stem cell-derived exosomal microrna-133b suppresses glioma progression via wnt/beta-catenin signaling pathway by targeting Ezh2. Stem Cell Res Ther. 2019;10(1):381. https://doi.org/10.1186/s13287-019-1446-z.

    Article  CAS  Google Scholar 

  33. Vakhshiteh F, Rahmani S, Ostad SN, Madjd Z, Dinarvand R, Atyabi F. Exosomes derived from Mir-34a-overexpressing mesenchymal stem cells inhibit in vitro tumor growth: a new approach for drug delivery. Life Sci. 2021;266:118871. https://doi.org/10.1016/j.lfs.2020.118871.

    Article  CAS  Google Scholar 

  34. Xu Y, Liu N, Wei Y, Zhou D, Lin R, Wang X, et al. Anticancer effects of Mir-124 delivered by Bm-Msc derived exosomes on cell proliferation, epithelial mesenchymal transition, and chemotherapy sensitivity of pancreatic cancer cells. Aging (Albany NY). 2020;12(19):19660–76. https://doi.org/10.18632/aging.103997.

    Article  CAS  Google Scholar 

  35. de Visser KE, Eichten A, Coussens LM. Paradoxical roles of the immune system during cancer development. Nat Rev Cancer. 2006;6(1):24–37. https://doi.org/10.1038/nrc1782.

    Article  CAS  Google Scholar 

  36. Jing L, Hua X, Yuanna D, Rukun Z, Junjun M. Exosomal Mir-499a-5p inhibits endometrial cancer growth and metastasis via targeting Vav3. Cancer Manag Res. 2020;12:13541–52. https://doi.org/10.2147/CMAR.S283747.

    Article  CAS  Google Scholar 

  37. Rashed MH, Bayraktar E, Helal GK, Abd-Ellah MF, Amero P, Chavez-Reyes A, et al. Exosomes: from garbage bins to promising therapeutic targets. Int J Mol Sci. 2017. https://doi.org/10.3390/ijms18030538.

    Article  Google Scholar 

  38. Yang EL, Wang X, Gong ZY, Yu M, Wu HW, Zhang DS. Exosome-mediated metabolic reprogramming: the emerging role in tumor microenvironment remodeling and its influence on cancer progression. Signal Transduct Tar. 2020. https://doi.org/10.1038/s41392-020-00359-5.

    Article  Google Scholar 

  39. Dai J, Su Y, Zhong S, Cong L, Liu B, Yang J, et al. Exosomes: key players in cancer and potential therapeutic strategy. Signal Transduct Target Ther. 2020;5(1):145. https://doi.org/10.1038/s41392-020-00261-0.

    Article  CAS  Google Scholar 

  40. Filipazzi P, Burdek M, Villa A, Rivoltini L, Huber V. Recent advances on the role of tumor exosomes in immunosuppression and disease progression. Semin Cancer Biol. 2012;22(4):342–9. https://doi.org/10.1016/j.semcancer.2012.02.005.

    Article  CAS  Google Scholar 

  41. Zhao XY, Wu DL, Ma XD, Wang JL, Hou WJ, Zhang W. Exosomes as drug carriers for cancer therapy and challenges regarding exosome uptake. Biomed Pharmacother. 2020. https://doi.org/10.1016/j.biopha.2020.110237.

    Article  Google Scholar 

  42. Lin Y, Xu J, Lan H. Tumor-associated macrophages in tumor metastasis: biological roles and clinical therapeutic applications. J Hematol Oncol. 2019;12(1):76. https://doi.org/10.1186/s13045-019-0760-3.

    Article  Google Scholar 

  43. Baig MS, Roy A, Rajpoot S, Liu D, Savai R, Banerjee S, et al. Tumor-derived exosomes in the regulation of macrophage polarization. Inflamm Res. 2020;69(5):435–51. https://doi.org/10.1007/s00011-020-01318-0.

    Article  CAS  Google Scholar 

  44. van Niel G, Charrin S, Simoes S, Romao M, Rochin L, Saftig P, et al. The tetraspanin Cd63 regulates Escrt-independent and -dependent endosomal sorting during melanogenesis. Dev Cell. 2011;21(4):708–21. https://doi.org/10.1016/j.devcel.2011.08.019.

    Article  CAS  Google Scholar 

  45. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74. https://doi.org/10.1016/j.cell.2011.02.013.

    Article  CAS  Google Scholar 

  46. You X, Wang Y, Meng J, Han S, Liu L, Sun Y, et al. Exosomal Mir663b exposed to Tgfbeta1 promotes cervical cancer metastasis and epithelialmesenchymal transition by targeting Mgat3. Oncol Rep. 2021. https://doi.org/10.3892/or.2021.7963.

    Article  Google Scholar 

  47. Mohammadi S, Yousefi F, Shabaninejad Z, Movahedpour A, Mahjoubin Tehran M, Shafiee A, et al. Exosomes and cancer: from oncogenic roles to therapeutic applications. IUBMB Life. 2020;72(4):724–48. https://doi.org/10.1002/iub.2182.

    Article  CAS  Google Scholar 

  48. Xue D, Han J, Liang Z, Jia L, Liu Y, Tuo H, et al. Current perspectives on the unique roles of exosomes in drug resistance of hepatocellular carcinoma. J Hepatocell Carcinoma. 2022;9:99–112. https://doi.org/10.2147/JHC.S351038.

    Article  CAS  Google Scholar 

  49. Pusta A, Tertis M, Graur F, Cristea C, Al HN. Aptamers and new bioreceptors for the electrochemical detection of biomarkers expressed in hepatocellular carcinoma. Curr Med Chem. 2022. https://doi.org/10.2174/0929867329666220222113707.

    Article  Google Scholar 

  50. Bastos N, Ruivo CF, da Silva S, Melo SA. Exosomes in cancer: use them or target them? Semin Cell Dev Biol. 2018;78:13–21. https://doi.org/10.1016/j.semcdb.2017.08.009.

    Article  CAS  Google Scholar 

  51. Hoshino A, Kim HS, Bojmar L, Gyan KE, Cioffi M, Hernandez J, et al. Extracellular vesicle and particle biomarkers define multiple human cancers. Cell. 2020;182(4):1044–61. https://doi.org/10.1016/j.cell.2020.07.009 (e18).

    Article  CAS  Google Scholar 

  52. Marques P, Grossman AB, Korbonits M. The tumour microenvironment of pituitary neuroendocrine tumours. Front Neuroendocrinol. 2020;58:100852. https://doi.org/10.1016/j.yfrne.2020.100852.

    Article  CAS  Google Scholar 

  53. Borriello L, Seeger RC, Asgharzadeh S, DeClerck YA. More than the genes, the tumor microenvironment in neuroblastoma. Cancer Lett. 2016;380(1):304–14. https://doi.org/10.1016/j.canlet.2015.11.017.

    Article  CAS  Google Scholar 

  54. Konjevic GM, Vuletic AM, Mirjacic Martinovic KM, Larsen AK, Jurisic VB. The role of cytokines in the regulation of Nk cells in the tumor environment. Cytokine. 2019;117:30–40. https://doi.org/10.1016/j.cyto.2019.02.001.

    Article  CAS  Google Scholar 

  55. Jacobs B, Ullrich E. The interaction of Nk cells and dendritic cells in the tumor environment: how to enforce Nk Cell & Dc action under immunosuppressive conditions? Curr Med Chem. 2012;19(12):1771–9. https://doi.org/10.2174/092986712800099857.

    Article  CAS  Google Scholar 

  56. Russo E, Laffranchi M, Tomaipitinca L, Del Prete A, Santoni A, Sozzani S, et al. Nk Cell anti-tumor surveillance in a myeloid cell-shaped environment. Front Immunol. 2021;12:787116. https://doi.org/10.3389/fimmu.2021.787116.

    Article  CAS  Google Scholar 

  57. Raposo G, Nijman HW, Stoorvogel W, Liejendekker R, Harding CV, Melief CJ, et al. B lymphocytes secrete antigen-presenting vesicles. J Exp Med. 1996;183(3):1161–72. https://doi.org/10.1084/jem.183.3.1161.

    Article  CAS  Google Scholar 

  58. Quah BJ, O’Neill HC. Mycoplasma contaminants present in exosome preparations induce polyclonal B cell responses. J Leukoc Biol. 2007;82(5):1070–82. https://doi.org/10.1189/jlb.0507277.

    Article  CAS  Google Scholar 

  59. Mao Y, Wang Y, Dong L, Zhang Q, Wang C, Zhang Y, et al. Circulating exosomes from esophageal squamous cell carcinoma mediate the generation of B10 and Pd-1(High) Breg cells. Cancer Sci. 2019;110(9):2700–10. https://doi.org/10.1111/cas.14122.

    Article  CAS  Google Scholar 

  60. Vallhov H, Gutzeit C, Johansson SM, Nagy N, Paul M, Li Q, et al. Exosomes containing glycoprotein 350 released by Ebv-transformed B cells selectively target b cells through Cd21 and Block Ebv infection in vitro. J Immunol. 2011;186(1):73–82. https://doi.org/10.4049/jimmunol.1001145.

    Article  CAS  Google Scholar 

  61. Szajnik M, Czystowska M, Szczepanski MJ, Mandapathil M, Whiteside TL. Tumor-derived microvesicles induce, expand and up-regulate biological activities of human regulatory T Cells (Treg). PLoS One. 2010. https://doi.org/10.1371/journal.pone.0011469.

    Article  Google Scholar 

  62. Obermajer N, Urban J, Wieckowski E, Muthuswamy R, Ravindranathan R, Bartlett DL, et al. Promoting the accumulation of tumor-specific T cells in tumor tissues by dendritic cell vaccines and chemokine-modulating agents. Nat Protoc. 2018;13(2):335–57. https://doi.org/10.1038/nprot.2017.130.

    Article  CAS  Google Scholar 

  63. Ham S, Lima LG, Chai EPZ, Muller A, Lobb RJ, Krumeich S, et al. Breast cancer-derived exosomes alter macrophage polarization via Gp130/Stat3 signaling. Front Immunol. 2018. https://doi.org/10.3389/fimmu.2018.00871.

    Article  Google Scholar 

  64. Pekarev OG, Pekareva EO, Mayborodin IV, Silachev DN, Baranov II, Pozdnyakov IM, et al. The potential of extracellular microvesicles of mesenchymal stromal cells in obstetrics. J Matern Fetal Neonatal Med. 2021. https://doi.org/10.1080/14767058.2021.1951213.

    Article  Google Scholar 

  65. Pistono C, Bister N, Stanova I, Malm T. Glia-derived extracellular vesicles: role in central nervous system communication in health and disease. Front Cell Dev Biol. 2020;8:623771. https://doi.org/10.3389/fcell.2020.623771.

    Article  Google Scholar 

  66. Escudero CA, Herlitz K, Troncoso F, Acurio J, Aguayo C, Roberts JM, et al. Role of extracellular vesicles and micrornas on dysfunctional angiogenesis during preeclamptic pregnancies. Front Physiol. 2016;7:98. https://doi.org/10.3389/fphys.2016.00098.

    Article  Google Scholar 

  67. Lorenc T, Chrzanowski J, Olejarz W. Current perspectives on clinical use of exosomes as a personalized contrast media and theranostics. Cancers (Basel). 2020. https://doi.org/10.3390/cancers12113386.

    Article  Google Scholar 

  68. Grimaldi A, Zarone MR, Irace C, Zappavigna S, Lombardi A, Kawasaki H, et al. Non-coding Rnas as a new dawn in tumor diagnosis. Semin Cell Dev Biol. 2018;78:37–50. https://doi.org/10.1016/j.semcdb.2017.07.035.

    Article  CAS  Google Scholar 

  69. Ding Y, Li W, Wang K, Xu C, Hao M, Ding L. Perspectives of the application of liquid biopsy in colorectal cancer. Biomed Res Int. 2020;2020:6843180. https://doi.org/10.1155/2020/6843180.

    Article  CAS  Google Scholar 

  70. Barger JF, Rahman MA, Jackson D, Acunzo M, Nana-Sinkam SP. Extracellular mirnas as biomarkers in cancer. Food Chem Toxicol. 2016;98:66–72. https://doi.org/10.1016/j.fct.2016.06.010.

    Article  CAS  Google Scholar 

  71. Wu Z, Yang Z, Dai Y, Zhu Q, Chen LA. Update on liquid biopsy in clinical management of non-small cell lung cancer. Onco Targets Ther. 2019;12:5097–109. https://doi.org/10.2147/OTT.S203070.

    Article  CAS  Google Scholar 

  72. Lan B, Zeng S, Grutzmann R, Pilarsky C. The role of exosomes in pancreatic cancer. Int J Mol Sci. 2019. https://doi.org/10.3390/ijms20184332.

    Article  Google Scholar 

  73. Visci G, Tolomeo D, Agostini A, Traversa D, Macchia G, Storlazzi CT. Circrnas and fusion-circrnas in cancer: new players in an old game. Cell Signal. 2020;75:109747. https://doi.org/10.1016/j.cellsig.2020.109747.

    Article  CAS  Google Scholar 

  74. Hao X, Sun G, Zhang Y, Kong X, Rong D, Song J, et al. Targeting immune cells in the tumor microenvironment of Hcc: new opportunities and challenges. Front Cell Dev Biol. 2021;9:775462. https://doi.org/10.3389/fcell.2021.775462.

    Article  Google Scholar 

  75. Bitzer M, Spahn S, Babaei S, Horger M, Singer S, Schulze-Osthoff K, et al. Targeting extracellular and juxtamembrane Fgfr2 mutations in chemotherapy-refractory cholangiocarcinoma. NPJ Precis Oncol. 2021;5(1):80. https://doi.org/10.1038/s41698-021-00220-0.

    Article  CAS  Google Scholar 

  76. Guo CY, Liu JB, Zhou QB, Song JM, Zhang ZY, Li Z, et al. Exosomal noncoding Rnas and tumor drug resistance. Can Res. 2020;80(20):4307–13. https://doi.org/10.1158/0008-5472.Can-20-0032.

    Article  CAS  Google Scholar 

  77. Kowal J, Arras G, Colombo M, Jouve M, Morath JP, Primdal-Bengtson B, et al. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc Natl Acad Sci USA. 2016;113(8):E968–77. https://doi.org/10.1073/pnas.1521230113.

    Article  CAS  Google Scholar 

  78. Kahlert C, Melo SA, Protopopov A, Tang J, Seth S, Koch M, et al. Identification of double-stranded genomic DNA spanning all chromosomes with mutated Kras and P53 DNA in the serum exosomes of patients with pancreatic cancer. J Biol Chem. 2014;289(7):3869–75. https://doi.org/10.1074/jbc.C113.532267.

    Article  CAS  Google Scholar 

  79. Melzer C, Rehn V, Yang Y, Bahre H, von der Ohe J, Hass R. Taxol-loaded Msc-derived exosomes provide a therapeutic vehicle to target metastatic breast cancer and other carcinoma cells. Cancers (Basel). 2019. https://doi.org/10.3390/cancers11060798.

    Article  Google Scholar 

  80. Shamili FH, Bayegi HR, Salmasi Z, Sadri K, Mahmoudi M, Kalantari M, et al. Exosomes derived from trail-engineered mesenchymal stem cells with effective anti-tumor activity in a mouse melanoma model. Int J Pharm. 2018;549(1–2):218–29. https://doi.org/10.1016/j.ijpharm.2018.07.067.

    Article  CAS  Google Scholar 

  81. Ran L, Tan X, Li Y, Zhang H, Ma R, Ji T, et al. Delivery of oncolytic adenovirus into the nucleus of tumorigenic cells by tumor microparticles for virotherapy. Biomaterials. 2016;89:56–66. https://doi.org/10.1016/j.biomaterials.2016.02.025.

    Article  CAS  Google Scholar 

  82. Tang K, Zhang Y, Zhang H, Xu P, Liu J, Ma J, et al. Delivery of chemotherapeutic drugs in tumour cell-derived microparticles. Nat Commun. 2012;3:1282. https://doi.org/10.1038/ncomms2282.

    Article  CAS  Google Scholar 

  83. Chen J, Sun W, Zhang H, Ma J, Xu P, Yu Y, et al. Macrophages reprogrammed by lung cancer microparticles promote tumor development via release of Il-1beta. Cell Mol Immunol. 2020;17(12):1233–44. https://doi.org/10.1038/s41423-019-0313-2.

    Article  CAS  Google Scholar 

  84. Cheow ES, Cheng WC, Lee CN, de Kleijn D, Sorokin V, Sze SK. Plasma-derived extracellular vesicles contain predictive biomarkers and potential therapeutic targets for myocardial ischemic (Mi) injury. Mol Cell Proteom. 2016;15(8):2628–40. https://doi.org/10.1074/mcp.M115.055731.

    Article  CAS  Google Scholar 

  85. Wei Z, Zhang X, Yong T, Bie N, Zhan G, Li X, et al. Boosting anti-Pd-1 therapy with metformin-loaded macrophage-derived microparticles. Nat Commun. 2021;12(1):440. https://doi.org/10.1038/s41467-020-20723-x.

    Article  CAS  Google Scholar 

  86. Gao Y, Zhang H, Zhou N, Xu P, Wang J, Gao Y, et al. Methotrexate-loaded tumour-cell-derived microvesicles can relieve biliary obstruction in patients with extrahepatic cholangiocarcinoma. Nat Biomed Eng. 2020;4(7):743–53. https://doi.org/10.1038/s41551-020-0583-0.

    Article  CAS  Google Scholar 

  87. Zhang W, Yu ZL, Wu M, Ren JG, Xia HF, Sa GL, et al. Magnetic and folate functionalization enables rapid isolation and enhanced tumor-targeting of cell-derived microvesicles. ACS Nano. 2017;11(1):277–90. https://doi.org/10.1021/acsnano.6b05630.

    Article  CAS  Google Scholar 

  88. Wan Y, Wang L, Zhu C, Zheng Q, Wang G, Tong J, et al. Aptamer-conjugated extracellular nanovesicles for targeted drug delivery. Cancer Res. 2018;78(3):798–808. https://doi.org/10.1158/0008-5472.CAN-17-2880.

    Article  CAS  Google Scholar 

  89. Wu P, Zhang B, Ocansey DKW, Xu W, Qian H. Extracellular vesicles: a bright star of nanomedicine. Biomaterials. 2021;269:120467. https://doi.org/10.1016/j.biomaterials.2020.120467.

    Article  CAS  Google Scholar 

  90. Gonzalez PS, O’Prey J, Cardaci S, Barthet VJA, Sakamaki JI, Beaumatin F, et al. Mannose impairs tumour growth and enhances chemotherapy. Nature. 2018;563(7733):719–23. https://doi.org/10.1038/s41586-018-0729-3.

    Article  CAS  Google Scholar 

  91. Sadik CD, Miyabe Y, Sezin T, Luster AD. The critical role of C5a as an initiator of neutrophil-mediated autoimmune inflammation of the joint and skin. Semin Immunol. 2018;37:21–9. https://doi.org/10.1016/j.smim.2018.03.002.

    Article  CAS  Google Scholar 

  92. Zhao K, Zhang Y, Zhang X, Li W, Shi C, Guo C, et al. Preparation and efficacy of Newcastle disease virus DNA vaccine encapsulated in chitosan nanoparticles. Int J Nanomed. 2014;9:389–402. https://doi.org/10.2147/IJN.S54226.

    Article  CAS  Google Scholar 

  93. Zhao K, Li W, Huang T, Luo X, Chen G, Zhang Y, et al. Preparation and efficacy of Newcastle disease virus DNA vaccine encapsulated in Plga nanoparticles. PLoS One. 2013;8(12):e82648. https://doi.org/10.1371/journal.pone.0082648.

    Article  CAS  Google Scholar 

  94. Prestwich RJ, Harrington KJ, Pandha HS, Vile RG, Melcher AA, Errington F. Oncolytic viruses: a novel form of immunotherapy. Expert Rev Anticancer Ther. 2008;8(10):1581–8. https://doi.org/10.1586/14737140.8.10.1581.

    Article  CAS  Google Scholar 

  95. Munguia A, Ota T, Miest T, Russell SJ. Cell carriers to deliver oncolytic viruses to sites of myeloma tumor growth. Gene Ther. 2008;15(10):797–806. https://doi.org/10.1038/gt.2008.45.

    Article  CAS  Google Scholar 

  96. Ferguson MS, Lemoine NR, Wang Y. Systemic delivery of oncolytic viruses: hopes and hurdles. Adv Virol. 2012;2012:805629. https://doi.org/10.1155/2012/805629.

    Article  CAS  Google Scholar 

  97. Du W, Seah I, Bougazzoul O, Choi G, Meeth K, Bosenberg MW, et al. Stem cell-released oncolytic herpes simplex virus has therapeutic efficacy in brain metastatic melanomas. Proc Natl Acad Sci USA. 2017;114(30):E6157–65. https://doi.org/10.1073/pnas.1700363114.

    Article  CAS  Google Scholar 

  98. Zhao K, Zhang Y, Zhang X, Shi C, Wang X, Wang X, et al. Chitosan-coated poly(lactic-co-glycolic) acid nanoparticles as an efficient delivery system for Newcastle disease virus DNA vaccine. Int J Nanomed. 2014;9:4609–19. https://doi.org/10.2147/IJN.S70633.

    Article  CAS  Google Scholar 

  99. Zhang H, Tang K, Zhang Y, Ma R, Ma J, Li Y, et al. Cell-free tumor microparticle vaccines stimulate dendritic cells via Cgas/sting signaling. Cancer Immunol Res. 2015;3(2):196–205. https://doi.org/10.1158/2326-6066.CIR-14-0177.

    Article  CAS  Google Scholar 

  100. Hopper C. Photodynamic therapy: a clinical reality in the treatment of cancer. Lancet Oncol. 2000;1:212–9. https://doi.org/10.1016/s1470-2045(00)00166-2.

    Article  CAS  Google Scholar 

  101. Lim CK, Heo J, Shin S, Jeong K, Seo YH, Jang WD, et al. Nanophotosensitizers toward advanced photodynamic therapy of cancer. Cancer Lett. 2013;334(2):176–87. https://doi.org/10.1016/j.canlet.2012.09.012.

    Article  CAS  Google Scholar 

  102. Pinto A, Marangon I, Mereaux J, Nicolas-Boluda A, Lavieu G, Wilhelm C, et al. Immune reprogramming precision photodynamic therapy of peritoneal metastasis by scalable stem-cell-derived extracellular vesicles. ACS Nano. 2021;15(2):3251–63. https://doi.org/10.1021/acsnano.0c09938.

    Article  CAS  Google Scholar 

  103. Yang Z, Wang J, Ai S, Sun J, Mai X, Guan W. Self-generating oxygen enhanced mitochondrion-targeted photodynamic therapy for tumor treatment with hypoxia scavenging. Theranostics. 2019;9(23):6809–23. https://doi.org/10.7150/thno.36988.

    Article  CAS  Google Scholar 

  104. Detty MR, Gibson SL, Wagner SJ. Current clinical and preclinical photosensitizers for use in photodynamic therapy. J Med Chem. 2004;47(16):3897–915. https://doi.org/10.1021/jm040074b.

    Article  CAS  Google Scholar 

  105. Nam J, Son S, Ochyl LJ, Kuai R, Schwendeman A, Moon JJ. Chemo-photothermal therapy combination elicits anti-tumor immunity against advanced metastatic cancer. Nat Commun. 2018;9(1):1074. https://doi.org/10.1038/s41467-018-03473-9.

    Article  CAS  Google Scholar 

  106. Bechet D, Couleaud P, Frochot C, Viriot ML, Guillemin F, Barberi-Heyob M. Nanoparticles as vehicles for delivery of photodynamic therapy agents. Trends Biotechnol. 2008;26(11):612–21. https://doi.org/10.1016/j.tibtech.2008.07.007.

    Article  CAS  Google Scholar 

  107. Fuhrmann G, Serio A, Mazo M, Nair R, Stevens MM. Active loading into extracellular vesicles significantly improves the cellular uptake and photodynamic effect of porphyrins. J Control Release. 2015;205:35–44. https://doi.org/10.1016/j.jconrel.2014.11.029.

    Article  CAS  Google Scholar 

  108. Li SY, Cheng H, Xie BR, Qiu WX, Zeng JY, Li CX, et al. Cancer cell membrane camouflaged cascade bioreactor for cancer targeted starvation and photodynamic therapy. ACS Nano. 2017;11(7):7006–18. https://doi.org/10.1021/acsnano.7b02533.

    Article  CAS  Google Scholar 

  109. Liu L, Zhou X, Zheng R, Huang J, Kong R, Li Y, et al. Self-delivery nanomedicine for chemotherapy sensitized photodynamic therapy. Chem Commun (Camb). 2021;57(59):7296–9. https://doi.org/10.1039/d1cc02318g.

    Article  CAS  Google Scholar 

  110. Wang Y, Xie Y, Li J, Peng ZH, Sheinin Y, Zhou J, et al. Tumor-penetrating nanoparticles for enhanced anticancer activity of combined photodynamic and hypoxia-activated therapy. ACS Nano. 2017;11(2):2227–38. https://doi.org/10.1021/acsnano.6b08731.

    Article  CAS  Google Scholar 

  111. Gong J, Chen D, Kashiwaba M, Kufe D. Induction of antitumor activity by immunization with fusions of dendritic and carcinoma cells. Nat Med. 1997;3(5):558–61. https://doi.org/10.1038/nm0597-558.

    Article  CAS  Google Scholar 

  112. Yang X, Xie Y. Recent advances in polymeric core-shell nanocarriers for targeted delivery of chemotherapeutic drugs. Int J Pharm. 2021;608:121094. https://doi.org/10.1016/j.ijpharm.2021.121094.

    Article  CAS  Google Scholar 

  113. He J, Zheng R, Zhang Z, Tan J, Zhou C, Zhang G, et al. Collagen I enhances the efficiency and anti-tumor activity of dendritic-tumor fusion cells. Oncoimmunology. 2017;6(12):e1361094. https://doi.org/10.1080/2162402X.2017.1361094.

    Article  Google Scholar 

  114. Lu S, Yang N, He J, Gong W, Lai Z, Xie L, et al. Generation of cancer-specific cytotoxic Pd-1(-) T cells using liposome-encapsulated Crispr/cas system with dendritic/tumor fusion cells. J Biomed Nanotechnol. 2019;15(3):593–601. https://doi.org/10.1166/jbn.2019.2712.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Thank all authors.

Funding

There is no fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ximei Xu.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, X., Xiang, Y., Yang, Y. et al. The application of tumor cell-derived vesicles in oncology therapy. Clin Transl Oncol 25, 364–374 (2023). https://doi.org/10.1007/s12094-022-02966-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-022-02966-w

Keywords

Navigation