Skip to main content

Advertisement

Log in

Application of tumor-educated platelets as new fluid biopsy markers in various tumors

  • Review Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

The incidence of malignant tumors is increasing year by year. Early detection and diagnosis of malignant tumors can improve the prognosis of patients and prolong their life. Pathological biopsy is the current gold standard for diagnosis, but the results of pathological biopsy are affected by the sampling site and cannot fully reflect the nature of the disease. Moreover, the invasive nature of pathological biopsy limits repeated detection. Liquid biopsies are non-invasive and can be used for early detection and monitoring of tumors, which considered to represent a promising tool. Platelets make themselves to be one of the richest liquid biopsy sources by the capacity to take up proteins and nucleic acids and alter their megakaryocyte-derived transcripts and proteins in response to external signals, which are called tumor-educated platelets (TEPs). In this article, we will review the application of tumor-educated platelets in various malignancies (nasopharyngeal carcinoma, prostate cancer, lung cancer, glioblastoma, colorectal cancer, pancreas cancer, ovarian cancer, sarcoma, breast cancer and hepatocellular carcinoma) and provide theoretical basis for the research of TEPs in tumor diagnosis, monitoring and treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bardelli A, Pantel K. Liquid biopsies, what we do not know (yet). Cancer Cell. 2017;31(2):172–9.

    Article  CAS  Google Scholar 

  2. Best MG, Wesseling P, Wurdinger T. Tumor-educated platelets as a noninvasive biomarker source for cancer detection and progression monitoring. Cancer Res. 2018;78(13):3407–12.

    Article  CAS  Google Scholar 

  3. Sol N, Wurdinger T. Platelet RNA signatures for the detection of cancer. Cancer Metastasis Rev. 2017;36(2):263–72.

    Article  CAS  Google Scholar 

  4. Dovizio M, Ballerini P, Fullone R, Tacconelli S, Contursi A, Patrignani P. Multifaceted functions of platelets in cancer: from tumorigenesis to liquid biopsy tool and drug delivery system. Int J Mol Sci. 2020;21(24):9585.

    Article  CAS  Google Scholar 

  5. Calverley DC, Phang TL, Choudhury QG, Gao B, Oton AB, Weyant MJ, et al. Significant downregulation of platelet gene expression in metastatic lung cancer. Clin Transl Sci. 2010;3(5):227–32.

    Article  CAS  Google Scholar 

  6. Cirillo M, Craig AFM, Borchmann S, Kurtz DM. Liquid biopsy in lymphoma: molecular methods and clinical applications. Cancer Treat Rev. 2020;91: 102106.

    Article  CAS  Google Scholar 

  7. Roweth HG, Battinelli EM. Lessons to learn from tumor-educated platelets. Blood. 2021;137(23):3174–80.

    Article  CAS  Google Scholar 

  8. Best MG, Vancura A, Wurdinger T. Platelet RNA as a circulating biomarker trove for cancer diagnostics. J Thromb Haemost. 2017;15(7):1295–306.

    Article  CAS  Google Scholar 

  9. Wang H, Wei X, Wu B, Su J, Tan W, Yang K. Tumor-educated platelet miR-34c-3p and miR-18a-5p as potential liquid biopsy biomarkers for nasopharyngeal carcinoma diagnosis. Cancer Manag Res. 2019;11:3351–60.

    Article  CAS  Google Scholar 

  10. D’Ambrosi S, Nilsson RJ, Wurdinger T. Platelets and tumor-associated RNA transfer. Blood. 2021;137(23):3181–91.

    Article  Google Scholar 

  11. Wurdinger T, In’t Veld S, Best MG. Platelet RNA as pan-tumor biomarker for cancer detection. Cancer Res. 2020;80(7):1371–3.

    Article  CAS  Google Scholar 

  12. Ge X, Yuan L, Cheng B, Dai K. Identification of seven tumor-educated platelets RNAs for cancer diagnosis. J Clin Lab Anal. 2021;35(6): e23791.

    Article  CAS  Google Scholar 

  13. Liu L, Lin F, Ma X, Chen Z, Yu J. Tumor-educated platelet as liquid biopsy in lung cancer patients. Crit Rev Oncol Hematol. 2020;146: 102863.

    Article  Google Scholar 

  14. Alhasan AA, Izuogu OG, Al-Balool HH, Steyn JS, Evans A, Colzani M, et al. Circular RNA enrichment in platelets is a signature of transcriptome degradation. Blood. 2016;127(9):e1–11.

    Article  CAS  Google Scholar 

  15. Angénieux C, Maître B, Eckly A, Lanza F, Gachet C, de la Salle H. Time-dependent decay of mRNA and ribosomal RNA during platelet aging and its correlation with translation activity. PLoS One. 2016;11(1): e0148064.

    Article  Google Scholar 

  16. Nilsson RJ, Balaj L, Hulleman E, van Rijn S, Pegtel DM, Walraven M, et al. Blood platelets contain tumor-derived RNA biomarkers. Blood. 2011;118(13):3680–3.

    Article  Google Scholar 

  17. Best MG, Sol N, Kooi I, Tannous J, Westerman BA, Rustenburg F, et al. RNA-seq of tumor-educated platelets enables blood-based pan-cancer, multiclass, and molecular pathway cancer diagnostics. Cancer Cell. 2015;28(5):666–76.

    Article  CAS  Google Scholar 

  18. Mohanty A, Mohanty SK, Rout S, Pani C. Liquid biopsy, the hype vs. hope in molecular and clinical oncology. Semin Oncol. 2021;48(3):259–67.

    Article  Google Scholar 

  19. Boerrigter E, Groen LN, Van Erp NP, Verhaegh GW, Schalken JA. Clinical utility of emerging biomarkers in prostate cancer liquid biopsies. Expert Rev Mol Diagn. 2020;20(2):219–30.

    Article  CAS  Google Scholar 

  20. Tjon-Kon-Fat LA, Lundholm M, Schröder M, Wurdinger T, Thellenberg-Karlsson C, Widmark A, et al. Platelets harbor prostate cancer biomarkers and the ability to predict therapeutic response to abiraterone in castration resistant patients. Prostate. 2018;78(1):48–53.

    Article  CAS  Google Scholar 

  21. Freitas C, Sousa C, Machado F, Serino M, Santos V, Cruz-Martins N, et al. The role of liquid biopsy in early diagnosis of lung cancer. Front Oncol. 2021;11: 634316.

    Article  Google Scholar 

  22. Sheng M, Dong Z, Xie Y. Identification of tumor-educated platelet biomarkers of non-small-cell lung cancer. OncoTargets Ther. 2018;11:8143–51.

    Article  CAS  Google Scholar 

  23. Xing S, Zeng T, Xue N, He Y, Lai YZ, Li HL, et al. Development and validation of tumor-educated blood platelets integrin Alpha 2b (ITGA2B) RNA for diagnosis and prognosis of non-small-cell lung cancer through RNA-seq. Int J Biol Sci. 2019;15(9):1977–92.

    Article  CAS  Google Scholar 

  24. Dong X, Song X, Ding S, Yu M, Shang X, Wang K, et al. Tumor-educated platelet SNORD55 as a potential biomarker for the early diagnosis of non-small cell lung cancer. Thorac Cancer. 2021;12(5):659–66.

    Article  CAS  Google Scholar 

  25. Li X, Liu L, Song X, Wang K, Niu L, Xie L, et al. TEP linc-GTF2H2-1, RP3-466P172, and lnc-ST8SIA4-12 as novel biomarkers for lung cancer diagnosis and progression prediction. J Cancer Res Clin Oncol. 2021;147(6):1609–22.

    Article  CAS  Google Scholar 

  26. Luo CL, Xu ZG, Chen H, Ji J, Wang YH, Hu W, et al. LncRNAs and EGFRvIII sequestered in TEPs enable blood-based NSCLC diagnosis. Cancer Manag Res. 2018;10:1449–59.

    Article  CAS  Google Scholar 

  27. Dong X, Ding S, Yu M, Niu L, Xue L, Zhao Y, et al. Small nuclear RNAs (U1, U2, U5) in tumor-educated platelets are downregulated and act as promising biomarkers in lung cancer. Front Oncol. 2020;10:1627.

    Article  Google Scholar 

  28. Best MG, Sol N, Veld SI, Vancura A, Muller M, Niemeijer AN, et al. Swarm intelligence-enhanced detection of non-small-cell lung cancer using tumor-educated platelets. Cancer Cell. 2017;32(2):238-252 e9.

    Article  CAS  Google Scholar 

  29. Goswami C, Chawla S, Thakral D, Pant H, Verma P, Malik PS, et al. Molecular signature comprising 11 platelet-genes enables accurate blood-based diagnosis of NSCLC. BMC Genomics. 2020;21(1):744.

    Article  CAS  Google Scholar 

  30. Xue L, Xie L, Song X, Song X. Expression and significance of ACIN1 mRNA in platelets of LUNG CANCER. Zhongguo fei ai za zhi Chin J Lung Cancer. 2018;21(9):677–81.

    Google Scholar 

  31. Xue L, Xie L, Song X, Song X. Identification of potential tumor-educated platelets RNA biomarkers in non-small-cell lung cancer by integrated bioinformatical analysis. J Clin Lab Anal. 2018;32(7): e22450.

    Article  Google Scholar 

  32. Nilsson RJ, Karachaliou N, Berenguer J, Gimenez-Capitan A, Schellen P, Teixido C, et al. Rearranged EML4-ALK fusion transcripts sequester in circulating blood platelets and enable blood-based crizotinib response monitoring in non-small-cell lung cancer. Oncotarget. 2016;7(1):1066–75.

    Article  Google Scholar 

  33. Park CK, Kim JE, Kim MS, Kho BG, Park HY, Kim TO, et al. Feasibility of liquid biopsy using plasma and platelets for detection of anaplastic lymphoma kinase rearrangements in non-small cell lung cancer. J Cancer Res Clin Oncol. 2019;145(8):2071–82.

    Article  CAS  Google Scholar 

  34. Katayama R, Shaw AT, Khan TM, Mino-Kenudson M, Solomon BJ, Halmos B, et al. Mechanisms of acquired crizotinib resistance in ALK-rearranged lung cancers. Sci Transl Med. 2012;4(120):120ra17.

    Article  Google Scholar 

  35. Liu L, Song X, Li X, Xue L, Ding S, Niu L, et al. A three-platelet mRNA set: MAX, MTURN and HLA-B as biomarker for lung cancer. J Cancer Res Clin Oncol. 2019;145(11):2713–23.

    Article  CAS  Google Scholar 

  36. Sol N, Veld SI, Vancura A, Tjerkstra M, Leurs C, Rustenburg F, et al. Tumor-educated platelet RNA for the detection and pseudo progression monitoring of glioblastoma. Cell Rep Med. 2020;1(7):100101.

    Article  CAS  Google Scholar 

  37. Campanella R, Guarnaccia L, Cordiglieri C, Trombetta E, Caroli M, Carrabba G, et al. Tumor-educated platelets and angiogenesis in glioblastoma: another brick in the wall for novel prognostic and targetable biomarkers, changing the vision from a localized tumor to a systemic pathology. Cells. 2020;9(2):294.

    Article  CAS  Google Scholar 

  38. Meng Y, Sun J, Zheng Y, Zhang G, Yu T, Piao H. Platelets: the emerging clinical diagnostics and therapy selection of cancer liquid biopsies. Onco Targets Ther. 2021;14:3417–28.

    Article  Google Scholar 

  39. Peterson JE, Zurakowski D, Italiano JE Jr, Michel LV, Connors S, Oenick M, et al. VEGF, PF4 and PDGF are elevated in platelets of colorectal cancer patients. Angiogenesis. 2012;15(2):265–73.

    Article  CAS  Google Scholar 

  40. Yang L, Jiang Q, Li DZ, Zhou X, Yu DS, Zhong J. TIMP1 mRNA in tumor-educated platelets is diagnostic biomarker for colorectal cancer. Aging. 2019;11(20):8998–9012.

    Article  CAS  Google Scholar 

  41. Sabrkhany S, Kuijpers MJE, van Kuijk SMJ, Sanders L, Pineda S, Olde Damink SWM, et al. A combination of platelet features allows detection of early-stage cancer. Eur J Cancer (Oxf, Engl: 1990). 2017;80:5–13.

    Article  CAS  Google Scholar 

  42. Sabrkhany S, Kuijpers MJE, Knol JC, Olde Damink SWM, Dingemans AC, Verheul HM, et al. Exploration of the platelet proteome in patients with early-stage cancer. J Proteomics. 2018;177:65–74.

    Article  CAS  Google Scholar 

  43. Brinkman K, Meyer L, Bickel A, Enderle D, Berking C, Skog J, et al. Extracellular vesicles from plasma have higher tumour RNA fraction than platelets. J Extracell Vesicles. 2020;9(1):1741176.

    Article  CAS  Google Scholar 

  44. Lomnytska M, Pinto R, Becker S, Engström U, Gustafsson S, Björklund C, et al. Platelet protein biomarker panel for ovarian cancer diagnosis. Biomark Res. 2018;6:2.

    Article  Google Scholar 

  45. Piek J, Veld SI, Best M, Tannous B, Supernat A, Lok C, et al. EP457 assessment of ovarian tumors with tumor educated platelets TEPs. Int J Gynecol Cancer. 2019;29:A291–2.

    Google Scholar 

  46. El-Arabey AA, Abdalla M, Abd-Allah AR. GATA3 and stemness of high-grade serous ovarian carcinoma: novel hope for the deadliest type of ovarian cancer. Hum Cell. 2020;33(3):904–6.

    Article  Google Scholar 

  47. El-Arabey AA, Denizli M, Kanlikilicer P, Bayraktar R, Ivan C, Rashed M, et al. GATA3 as a master regulator for interactions of tumor-associated macrophages with high-grade serous ovarian carcinoma. Cell Signal. 2020;68: 109539.

    Article  CAS  Google Scholar 

  48. Ciucci A, Zannoni GF, Buttarelli M, Martinelli E, Mascilini F, Petrillo M, et al. Ovarian low and high grade serous carcinomas: hidden divergent features in the tumor microenvironment. Oncotarget. 2016;7(42):68033–43.

    Article  Google Scholar 

  49. Mysona D, Pyrzak A, Purohit S, Zhi W, Sharma A, Tran L, et al. A combined score of clinical factors and serum proteins can predict time to recurrence in high grade serous ovarian cancer. Gynecol Oncol. 2019;152(3):574–80.

    Article  CAS  Google Scholar 

  50. Battaglia A, Piermattei A, Buzzonetti A, Pasciuto T, Zampetti N, Fossati M, et al. PD-L1 expression on circulating tumour-derived microvesicles as a complementary tool for stratification of high-grade serous ovarian cancer patients. Cancers. 2021;13(20):5200.

    Article  CAS  Google Scholar 

  51. Malacrida B, Nichols S, Maniati E, Jones R, Delanie-Smith R, Roozitalab R, et al. A human multi-cellular model shows how platelets drive production of diseased extracellular matrix and tissue invasion. iScience. 2021;24(6):102676.

    Article  CAS  Google Scholar 

  52. Hu J, Liu Z, Wang X. Does TP53 mutation promote ovarian cancer metastasis to omentum by regulating lipid metabolism? Med Hypotheses. 2013;81(4):515–20.

    Article  CAS  Google Scholar 

  53. Žilovič D, Čiurlienė R, Sabaliauskaitė R, Jarmalaitė S. Future screening prospects for ovarian cancer. Cancers. 2021;13(15):3840.

    Article  Google Scholar 

  54. Heinhuis KM, Veld SI, Dwarshuis G, van den Broek D, Sol N, Best MG, et al. RNA-sequencing of tumor-educated platelets, a novel biomarker for blood-based sarcoma diagnostics. Cancers. 2020;12(6):1372.

    Article  CAS  Google Scholar 

  55. Alimirzaie S, Bagherzadeh M, Akbari MR. Liquid biopsy in breast cancer: a comprehensive review. Clin Genet. 2019;95(6):643–60.

    Article  CAS  Google Scholar 

  56. Yao B, Qu S, Hu R, Gao W, Jin S, Ju J, et al. Delivery of platelet TPM3 mRNA into breast cancer cells via microvesicles enhances metastasis. FEBS Open Bio. 2019;9(12):2159–69.

    Article  CAS  Google Scholar 

  57. Mendoza-Almanza G, Burciaga-Hernández L, Maldonado V, Melendez-Zajgla J, Olmos J. Role of platelets and breast cancer stem cells in metastasis. World J Stem Cell. 2020;12(11):1237–54.

    Article  Google Scholar 

  58. Mussbacher M, Brunnthaler L, Panhuber A, Starlinger P, Assinger A. Till death do us part-the multifaceted role of platelets in liver diseases. Int J Mol Sci. 2021;22(6):3113.

    Article  CAS  Google Scholar 

  59. Asghar S, Waqar W, Umar M, Manzoor S. Tumor educated platelets, a promising source for early detection of hepatocellular carcinoma: liquid biopsy an alternative approach to tissue biopsy. Clin Res Hepatol Gastroenterol. 2020;44(6):836–44.

    Article  CAS  Google Scholar 

  60. Malehmir M, Pfister D, Gallage S, Szydlowska M, Inverso D, Kotsiliti E, et al. Platelet GPIbα is a mediator and potential interventional target for NASH and subsequent liver cancer. Nat Med. 2019;25(4):641–55.

    Article  CAS  Google Scholar 

  61. Domínguez-Soto Á, Usategui A, Casas-Engel ML, Simón-Fuentes M, Nieto C, Cuevas VD, et al. Serotonin drives the acquisition of a profibrotic and anti-inflammatory gene profile through the 5-HT7R-PKA signaling axis. Sci Rep. 2017;7(1):14761.

    Article  Google Scholar 

  62. Piccolo P, Ferriero R, Barbato A, Attanasio S, Monti M, Perna C, et al. Up-regulation of miR-34b/c by JNK and FOXO3 protects from liver fibrosis. Proc Natl Acad Sci USA. 2021;118(10):e2025242118.

    Article  CAS  Google Scholar 

  63. Ghafoory S, Varshney R, Robison T, Kouzbari K, Woolington S, Murphy B, et al. Platelet TGF-β1 deficiency decreases liver fibrosis in a mouse model of liver injury. Blood Adv. 2018;2(5):470–80.

    Article  CAS  Google Scholar 

  64. Jiang Q, Mao R, Wu J, Chang L, Zhu H, Zhang G, et al. Platelet activation during chronic hepatitis B infection exacerbates liver inflammation and promotes fibrosis. J Med Virol. 2019;92(12):3319–26.

    Article  Google Scholar 

  65. Pavlovic N, Rani B, Gerwins P, Heindryckx F. Platelets as key factors in hepatocellular carcinoma. Cancers. 2019;11(7):1022.

    Article  CAS  Google Scholar 

  66. Best MG, Wurdinger T. Tumor-educated platelets for the earlier detection of hepatocellular carcinoma. Clin Res Hepatol Gastroenterol. 2020;44(6):794–5.

    Article  Google Scholar 

  67. Waqar W, Asghar S, Manzoor S. Platelets’ RNA as biomarker trove for differentiation of early-stage hepatocellular carcinoma from underlying cirrhotic nodules. PLoS One. 2021;16(9): e0256739.

    Article  CAS  Google Scholar 

  68. Antunes-Ferreira M, Koppers-Lalic D, Würdinger T. Circulating platelets as liquid biopsy sources for cancer detection. Mol Oncol. 2021;15(6):1727–43.

    Article  CAS  Google Scholar 

  69. Pinzani P, D’Argenio V, Del Re M, Pellegrini C, Cucchiara F, Salvianti F, et al. Updates on liquid biopsy: current trends and future perspectives for clinical application in solid tumors. Clin Chem Lab Med. 2021;59(7):1181–200.

    Article  CAS  Google Scholar 

  70. Kanikarla-Marie P, Lam M, Menter DG, Kopetz S. Platelets, circulating tumor cells, and the circulome. Cancer Metastasis Rev. 2017;36(2):235–48.

    Article  CAS  Google Scholar 

  71. Lasham A, Fitzgerald SJ, Knowlton N, Robb T, Tsai P, Black MA, et al. A predictor of early disease recurrence in patients with breast cancer using a cell-free RNA and protein liquid biopsy. Clin Breast Cancer. 2020;20(2):108–16.

    Article  CAS  Google Scholar 

  72. Olmedillas-López S, García-Arranz M, García-Olmo D. Current and emerging applications of droplet digital PCR in oncology. Mol Diagn Ther. 2017;21(5):493–510.

    Article  Google Scholar 

  73. Zhang X, Wang J, Chen Z, Hu Q, Wang C, Yan J, et al. Engineering PD-1-presenting platelets for cancer immunotherapy. Nano Lett. 2018;18(9):5716–25.

    Article  CAS  Google Scholar 

  74. Wang C, Sun W, Ye Y, Hu Q, Bomba HN, Gu Z. In situ activation of platelets with checkpoint inhibitors for post-surgical cancer immunotherapy. Nat Biomed Eng. 2017;1(2):0011.

    Article  CAS  Google Scholar 

  75. Papa AL, Jiang A, Korin N, Chen MB, Langan ET, Waterhouse A, et al. Platelet decoys inhibit thrombosis and prevent metastatic tumor formation in preclinical models. Sci Transl Med. 2019;11(479):eaau5898.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the 2021 National Innovation and Entrepreneurship Training program for College Students in China (Grant no. 202110632050).

Author information

Authors and Affiliations

Authors

Contributions

WY, ZH, HY participated in the conception and design of this study. LH, ZH carried out the study and collected important background information. XJ, WJ acquisition, analysis and interpretation of data. WY drafted the manuscript. HY revising it critically for intellectual content. All authors read and approved the final manuscript to be submitted.

Corresponding author

Correspondence to Yuanshuai Huang.

Ethics declarations

Conflict of interest

There is no conflicts of interest to report.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zhang, H., Li, H. et al. Application of tumor-educated platelets as new fluid biopsy markers in various tumors. Clin Transl Oncol 25, 114–125 (2023). https://doi.org/10.1007/s12094-022-02937-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-022-02937-1

Keywords

Navigation