Skip to main content
Log in

The role of NLRP3 inflammasome in colorectal cancer: potential therapeutic target

  • Review Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

All phases of carcinogenesis are affected by inflammation. Activation of the inflammasome is a crucial signaling mechanism that leads to acute and chronic inflammation. When specific nucleotide-binding domains, leucine-rich repeat-containing proteins (NLRs) are activated, inflammasomes are formed. The NLRP3 is one of the NLR family members with the most functional characterization. NLRP3 can modulate the immune systems, apoptosis, growth, and/or the gut microbiome to impact cancer development. Colorectal cancer (CRC) is one of the most common cancers, and it begins as a tissue overgrowth on the internal part of the rectum or colon. In vivo and in vitro studies showed that the NLRP3 inflammasome has a role in CRC development due to its broad activity in shaping immune responses. Here, onwards, we focus on the NLRP3 inflammasome role in CRC development, as well as the therapeutic prospective of modifying NLRP3 inflammasome in the context of anti-cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

It is not applicable.

References

  1. Tomé-Amat J, Olombrada M, Ruiz-de-la-Herrán J, Pérez-Gómez E, Andradas C, Sánchez C, et al. Efficient in vivo antitumor effect of an immunotoxin based on ribotoxin α-sarcin in nude mice bearing human colorectal cancer xenografts. Springerplus. 2015;4:1–10.

    Article  CAS  Google Scholar 

  2. Brünker P, Wartha K, Friess T, Grau-Richards S, Waldhauer I, Koller CF, et al. RG7386, a novel tetravalent FAP-DR5 antibody, effectively triggers FAP-dependent, avidity-driven DR5 hyperclustering and tumor cell apoptosis. Mol Cancer Ther. 2016;15:946–57.

    Article  PubMed  CAS  Google Scholar 

  3. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.

    Article  PubMed  Google Scholar 

  4. Lei G, Xu M, Xu Z, Lu C, Tan S. Combination of novel DR5 targeting agonistic scFv antibody TR2-3 with cisplatin shows enhanced synergistic antitumor activity in vitro and in vivo. Biomed Pharmacother. 2018;98:271–9.

    Article  CAS  PubMed  Google Scholar 

  5. Liu F-R, Bai S, Feng Q, Pan X-Y, Song S-L, Fang H, et al. Anti-colorectal cancer effects of anti-p21Ras scFv delivered by the recombinant adenovirus KGHV500 and cytokine-induced killer cells. BMC Cancer. 2018;18:1–10.

    Article  Google Scholar 

  6. Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell. 2010;140:883–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. de Visser KE, Eichten A, Coussens LM. Paradoxical roles of the immune system during cancer development. Nat Rev Cancer. 2006;6:24–37.

    Article  PubMed  CAS  Google Scholar 

  8. Man SM, Kanneganti TD. Regulation of inflammasome activation. Immunol Rev. 2015;265:6–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Verma D, Bivik C, Farahani E, Synnerstad I, Fredrikson M, Enerbäck C, et al. Inflammasome polymorphisms confer susceptibility to sporadic malignant melanoma. Pigment Cell Melanoma Res. 2012;25:506–13.

    Article  CAS  PubMed  Google Scholar 

  10. Ungerbäck J, Belenki D, Jawad ul-Hassan A, Fredrikson M, Fransén K, Elander N, et al. Genetic variation and alterations of genes involved in NFκB/TNFAIP3- and NLRP3-inflammasome signaling affect susceptibility and outcome of colorectal cancer. Carcinogenesis. 2012;33:2126–34.

    Article  PubMed  CAS  Google Scholar 

  11. Kim TM, Laird PW, Park PJ. The landscape of microsatellite instability in colorectal and endometrial cancer genomes. Cell. 2013;155:858–68.

    Article  CAS  PubMed  Google Scholar 

  12. Olsson L, Lindblom A. Family history of colorectal cancer in a Sweden county. Fam Cancer. 2003;2:87–93.

    Article  PubMed  Google Scholar 

  13. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65:87–108.

    Article  PubMed  Google Scholar 

  14. Valastyan S, Weinberg RA. Tumor metastasis: molecular insights and evolving paradigms. Cell. 2011;147:275–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Markowitz SD, Bertagnolli MM. Molecular basis of colorectal cancer. N Engl J Med. 2009;361:2449–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bodmer WF, Bailey CJ, Bodmer J, Bussey H, Ellis A, Gorman P, et al. Localization of the gene for familial adenomatous polyposis on chromosome 5. Nature. 1987;328:614–6.

    Article  CAS  PubMed  Google Scholar 

  17. De la Chapelle A. Genetic predisposition to colorectal cancer. Nat Rev Cancer. 2004;4:769–80.

    Article  PubMed  CAS  Google Scholar 

  18. Wynder EL, Kajitani T, Ishikawa S, Dodo H, Takano A. Environmental factors of cancer of the colon and rectum II. Japanese epidemiological data. Cancer. 1969;23:1210–20.

    Article  CAS  PubMed  Google Scholar 

  19. Bishehsari F, Mahdavinia M, Vacca M, Malekzadeh R, Mariani-Costantini R. Epidemiological transition of colorectal cancer in developing countries: environmental factors, molecular pathways, and opportunities for prevention. World J Gastroenterol. 2014;20:6055–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Pelucchi C, Tramacere I, Boffetta P, Negri E, La Vecchia C. Alcohol consumption and cancer risk. Nutr Cancer. 2011;63:983–90.

    Article  CAS  PubMed  Google Scholar 

  21. Martinon F, Burns K, Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-β. Mol Cell. 2002;10:417–26.

    Article  CAS  PubMed  Google Scholar 

  22. Latz E, Xiao TS, Stutz A. Activation and regulation of the inflammasomes. Nat Rev Immunol. 2013;13:397–411.

    Article  CAS  PubMed  Google Scholar 

  23. Man SM, Karki R, Kanneganti TD. Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases. Immunol Rev. 2017;277:61–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lamkanfi M, Kanneganti TD. Nlrp3: an immune sensor of cellular stress and infection. Int J Biochem Cell Biol. 2010;42:792–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kanneganti TD, Lamkanfi M, Núñez G. Intracellular NOD-like receptors in host defense and disease. Immunity. 2007;27:549–59.

    Article  CAS  PubMed  Google Scholar 

  26. Lamkanfi M, Dixit VM. The inflammasomes. PLoS Pathog. 2009;5: e1000510.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Jo E-K, Kim JK, Shin D-M, Sasakawa C. Molecular mechanisms regulating NLRP3 inflammasome activation. Cell Mol Immunol. 2016;13:148–59.

    Article  CAS  PubMed  Google Scholar 

  28. Donovan C, Liu G, Shen S, Marshall JE, Kim RY, Alemao CA, et al. The role of the microbiome and the NLRP3 inflammasome in the gut and lung. J Leukoc Biol. 2020;108:925–35.

    Article  CAS  PubMed  Google Scholar 

  29. Lotfi R, Nasiri Kalmarzi R, Rajabinejad M, Hasani S, Zamani F. The role of immune semaphorins in the pathogenesis of multiple sclerosis: Potential therapeutic targets. Int Immunopharmacol. 2021;95: 107556.

    Article  CAS  PubMed  Google Scholar 

  30. Pizarro TT, Arseneau KO, Bamias G, Cominelli F. Mouse models for the study of Crohn’s disease. Trends Mol Med. 2003;9:218–22.

    Article  CAS  PubMed  Google Scholar 

  31. Zaki MH, Boyd KL, Vogel P, Kastan MB, Lamkanfi M, Kanneganti TD. The NLRP3 inflammasome protects against loss of epithelial integrity and mortality during experimental colitis. Immunity. 2010;32:379–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Allen IC, TeKippe EM, Woodford RM, Uronis JM, Holl EK, Rogers AB, et al. The NLRP3 inflammasome functions as a negative regulator of tumorigenesis during colitis-associated cancer. J Exp Med. 2010;207:1045–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hirota SA, Ng J, Lueng A, Khajah M, Parhar K, Li Y, et al. NLRP3 inflammasome plays a key role in the regulation of intestinal homeostasis. Inflamm Bowel Dis. 2011;17:1359–72.

    Article  PubMed  Google Scholar 

  34. Dupaul-Chicoine J, Yeretssian G, Doiron K, Bergstrom KS, McIntire CR, LeBlanc PM, et al. Control of intestinal homeostasis, colitis, and colitis-associated colorectal cancer by the inflammatory caspases. Immunity. 2010;32:367–78.

    Article  CAS  PubMed  Google Scholar 

  35. Radtke F, Clevers H. Self-renewal and cancer of the gut: two sides of a coin. Science. 2005;307:1904–9.

    Article  CAS  PubMed  Google Scholar 

  36. Simms LA, Doecke JD, Walsh MD, Huang N, Fowler EV, Radford-Smith GL. Reduced alpha-defensin expression is associated with inflammation and not NOD2 mutation status in ileal Crohn’s disease. Gut. 2008;57:903–10.

    Article  CAS  PubMed  Google Scholar 

  37. Wehkamp J, Harder J, Weichenthal M, Schwab M, Schäffeler E, Schlee M, et al. NOD2 (CARD15) mutations in Crohn’s disease are associated with diminished mucosal alpha-defensin expression. Gut. 2004;53:1658–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Grivennikov SI, Karin M. Inflammation and oncogenesis: a vicious connection. Curr Opin Genet Dev. 2010;20:65–71.

    Article  CAS  PubMed  Google Scholar 

  39. Long AG, Lundsmith ET, Hamilton KE. Inflammation and Colorectal Cancer. Curr Colorectal Cancer Rep. 2017;13:341–51.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Rezaiemanesh A, Mahmoudi M, Amirzargar AA, Vojdanian M, Babaie F, Mahdavi J, et al. Upregulation of unfolded protein response and ER stress-related IL-23 production in M1 macrophages from ankylosing spondylitis patients. Inflammation. 2022;45:665–76.

    Article  CAS  PubMed  Google Scholar 

  41. Rathinam VA, Vanaja SK, Waggoner L, Sokolovska A, Becker C, Stuart LM, et al. TRIF licenses caspase-11-dependent NLRP3 inflammasome activation by gram-negative bacteria. Cell. 2012;150:606–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mathur A, Feng S, Hayward JA, Ngo C, Fox D, Atmosukarto II, et al. A multicomponent toxin from Bacillus cereus incites inflammation and shapes host outcome via the NLRP3 inflammasome. Nat Microbiol. 2019;4:362–74.

    Article  CAS  PubMed  Google Scholar 

  43. Davis BK, Philipson C, Hontecillas R, Eden K, Bassaganya-Riera J, Allen IC. Emerging significance of NLRs in inflammatory bowel disease. Inflamm Bowel Dis. 2014;20:2412–32.

    Article  PubMed  Google Scholar 

  44. Man SM. Inflammasomes in the gastrointestinal tract: infection, cancer and gut microbiota homeostasis. Nat Rev Gastroenterol Hepatol. 2018;15:721–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tanaka T, Kohno H, Suzuki R, Yamada Y, Sugie S, Mori H. A novel inflammation-related mouse colon carcinogenesis model induced by azoxymethane and dextran sodium sulfate. Cancer Sci. 2003;94:965–73.

    Article  CAS  PubMed  Google Scholar 

  46. Zhu H, Cao X. NLR members in inflammation-associated carcinogenesis. Cell Mol Immunol. 2017;14:403–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hu B, Elinav E, Huber S, Booth CJ, Strowig T, Jin C, et al. Inflammation-induced tumorigenesis in the colon is regulated by caspase-1 and NLRC4. Proc Natl Acad Sci. 2010;107:21635–40.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Pandey A, Shen C, Man SM. Inflammasomes in colitis and colorectal cancer: mechanism of action and therapies. Yale J Biol Med. 2019;92:481–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Zaki MH, Vogel P, Body-Malapel M, Lamkanfi M, Kanneganti TD. IL-18 production downstream of the Nlrp3 inflammasome confers protection against colorectal tumor formation. J Immunol. 2010;185:4912–20.

    Article  CAS  PubMed  Google Scholar 

  50. Neudecker V, Haneklaus M, Jensen O, Khailova L, Masterson JC, Tye H, et al. Myeloid-derived miR-223 regulates intestinal inflammation via repression of the NLRP3 inflammasome. J Exp Med. 2017;214:1737–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Dupaul-Chicoine J, Arabzadeh A, Dagenais M, Douglas T, Champagne C, Morizot A, et al. The Nlrp3 inflammasome suppresses colorectal cancer metastatic growth in the liver by promoting natural killer cell tumoricidal activity. Immunity. 2015;43:751–63.

    Article  CAS  PubMed  Google Scholar 

  52. Moossavi M, Parsamanesh N, Bahrami A, Atkin SL, Sahebkar A. Role of the NLRP3 inflammasome in cancer. Mol Cancer. 2018;17:158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Karki R, Man SM, Kanneganti TD. Inflammasomes and cancer. Cancer Immunol Res. 2017;5:94–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Azadeh H, Alizadeh-Navaei R, Rezaiemanesh A, Rajabinejad M. Immune-related adverse events (irAEs) in ankylosing spondylitis (AS) patients treated with interleukin (IL)-17 inhibitors: a systematic review and meta-analysis. Inflammopharmacology. 2022;30:435–51.

    Article  CAS  PubMed  Google Scholar 

  55. Hu B, Elinav E, Huber S, Booth CJ, Strowig T, Jin C, et al. Inflammation-induced tumorigenesis in the colon is regulated by caspase-1 and NLRC4. Proc Natl Acad Sci USA. 2010;107:21635–40.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Du Q, Wang Q, Fan H, Wang J, Liu X, Wang H, et al. Dietary cholesterol promotes AOM-induced colorectal cancer through activating the NLRP3 inflammasome. Biochem Pharmacol. 2016;105:42–54.

    Article  CAS  PubMed  Google Scholar 

  57. Zhao Y, Guo Q, Zhao K, Zhou Y, Li W, Pan C, et al. Small molecule GL-V9 protects against colitis-associated colorectal cancer by limiting NLRP3 inflammasome through autophagy. Oncoimmunology. 2017;7: e1375640.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Wang H, Wang Y, Du Q, Lu P, Fan H, Lu J, et al. Inflammasome-independent NLRP3 is required for epithelial-mesenchymal transition in colon cancer cells. Exp Cell Res. 2016;342:184–92.

    Article  CAS  PubMed  Google Scholar 

  59. Deng Q, Geng Y, Zhao L, Li R, Zhang Z, Li K, et al. NLRP3 inflammasomes in macrophages drive colorectal cancer metastasis to the liver. Cancer Lett. 2019;442:21–30.

    Article  CAS  PubMed  Google Scholar 

  60. Wang B, Li H, Wang X, Zhu X. The association of aberrant expression of NLRP3 and p-S6K1 in colorectal cancer. Pathol Res Pract. 2020;216: 152737.

    Article  CAS  PubMed  Google Scholar 

  61. Marandi Y, Hashemzade S, Tayebinia H, Karimi J, Zamani A, Khodadadi I. NLRP3-inflammasome activation is associated with epithelial-mesenchymal transition and progression of colorectal cancer. Iran J Basic Med Sci. 2021;24:483–92.

    PubMed  PubMed Central  Google Scholar 

  62. Shao X, Lei Z, Zhou C. NLRP3 promotes colorectal cancer cell proliferation and metastasis via regulating epithelial mesenchymal transformation. Anticancer Agents Med Chem. 2020;20:820–7.

    Article  CAS  PubMed  Google Scholar 

  63. Mutala LB, Deleine C, Karakachoff M, Dansette D, Ducoin K, Oger R, et al. The caspase-1/IL-18 axis of the inflammasome in tumor cells: a modulator of the Th1/Tc1 response of tumor-infiltrating t lymphocytes in colorectal cancer. Cancers (Basel). 2021. https://doi.org/10.3390/cancers13020189.

    Article  Google Scholar 

  64. Wang X, Jia Y, Wen L, Mu W, Wu X, Liu T, et al. Porphyromonas gingivalis promotes colorectal carcinoma by activating the hematopoietic NLRP3 inflammasome. Cancer Res. 2021;81:2745–59.

    Article  CAS  PubMed  Google Scholar 

  65. Guo W, Sun Y, Liu W, Wu X, Guo L, Cai P, et al. Small molecule-driven mitophagy-mediated NLRP3 inflammasome inhibition is responsible for the prevention of colitis-associated cancer. Autophagy. 2014;10:972–85.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Zhang Y, Li F, Wang L, Lou Y. A438079 affects colorectal cancer cell proliferation, migration, apoptosis, and pyroptosis by inhibiting the P2X7 receptor. Biochem Biophys Res Commun. 2021;558:147–53.

    Article  CAS  PubMed  Google Scholar 

  67. Shi F, Wei B, Lan T, Xiao Y, Quan X, Chen J, et al. Low NLRP3 expression predicts a better prognosis of colorectal cancer. 2021. Biosci Rep. https://doi.org/10.1042/BSR20210280.

  68. Qin Y, Yu Y, Yang C, Wang Z, Yang Y, Wang C, et al. Atractylenolide I inhibits NLRP3 inflammasome activation in colitis-associated colorectal cancer via suppressing Drp1-mediated mitochondrial fission. Front Pharmacol. 2021;12: 674340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Qiao S, Lv C, Tao Y, Miao Y, Zhu Y, Zhang W, et al. Arctigenin disrupts NLRP3 inflammasome assembly in colonic macrophages via downregulating fatty acid oxidation to prevent colitis-associated cancer. Cancer Lett. 2020;491:162–79.

    Article  CAS  PubMed  Google Scholar 

  70. Chung IC, OuYang CN, Yuan SN, Lin HC, Huang KY, Wu PS, et al. Pretreatment with a heat-killed probiotic modulates the NLRP3 inflammasome and attenuates colitis-associated colorectal cancer in mice. Nutrients. 2019. https://doi.org/10.3390/nu11030516.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Harper PA, Prokipcak RD, Bush LE, Golas CL, Okey AB. Detection and characterization of the Ah receptor for 2,3,7,8-tetrachlorodibenzo-p-dioxin in the human colon adenocarcinoma cell line LS180. Arch Biochem Biophys. 1991;290:27–36.

    Article  CAS  PubMed  Google Scholar 

  72. Erdelyi I, Levenkova N, Lin EY, Pinto JT, Lipkin M, Quimby FW, et al. Western-style diets induce oxidative stress and dysregulate immune responses in the colon in a mouse model of sporadic colon cancer. J Nutr. 2009;139:2072–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Díaz-Díaz CJ, Ronnekleiv-Kelly SM, Nukaya M, Geiger PG, Balbo S, Dator R, et al. The aryl hydrocarbon receptor is a repressor of inflammation-associated colorectal tumorigenesis in mouse. Ann Surg. 2016;264:429–36.

    Article  PubMed  Google Scholar 

  74. Ikuta T, Kobayashi Y, Kitazawa M, Shiizaki K, Itano N, Noda T, et al. ASC-associated inflammation promotes cecal tumorigenesis in aryl hydrocarbon receptor-deficient mice. Carcinogenesis. 2013;34:1620–7.

    Article  CAS  PubMed  Google Scholar 

  75. Wang Z, Tang X, Wu X, Yang M, Wang W, Wang L, et al. Cardamonin exerts anti-gastric cancer activity via inhibiting LncRNA-PVT1-STAT3 axis. 2019. Biosci Rep. https://doi.org/10.1042/BSR20190357.

  76. Xu L, Cai P, Li X, Wu X, Gao J, Liu W, et al. Inhibition of NLRP3 inflammasome activation in myeloid-derived suppressor cells by andrographolide sulfonate contributes to 5-FU sensitization in mice. Toxicol Appl Pharmacol. 2021;428: 115672.

    Article  CAS  PubMed  Google Scholar 

  77. Fan L, Xu C, Ge Q, Lin Y, Wong CC, Qi Y, et al. A. Muciniphila Suppresses Colorectal Tumorigenesis by Inducing TLR2/NLRP3-Mediated M1-Like TAMs. Cancer Immunol Res. 2021;9:1111–24.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors received no financial support for the research, authorship, and/or publication of this article.

Author information

Authors and Affiliations

Authors

Contributions

SV and FA contributed to the idea design and literature search. HT and YH wrote parts of the manuscript. AF contributed to designing the figures.

Corresponding author

Correspondence to Firoozeh Abolhasani Zadeh.

Ethics declarations

Conflict of interest

None.

Ethical approval

It is not applicable.

Informed consent

It is not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vafaei, S., Taheri, H., Hajimomeni, Y. et al. The role of NLRP3 inflammasome in colorectal cancer: potential therapeutic target. Clin Transl Oncol 24, 1881–1889 (2022). https://doi.org/10.1007/s12094-022-02861-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-022-02861-4

Keywords

Navigation