Skip to main content
Log in

Research progress on epigenetics of small B-cell lymphoma

  • Review Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Small B-cell lymphoma is the classification of B-cell chronic lymphoproliferative disorders that include chronic lymphocytic leukaemia/small lymphocytic lymphoma, follicular lymphoma, mantle cell lymphoma, marginal zone lymphoma, lymphoplasmacytic lymphoma/Waldenstrom macroglobulinemia. The clinical presentation is somewhat heterogeneous, and its occurrence and development mechanisms are not yet precise and may involve epigenetic changes. Epigenetic alterations mainly include DNA methylation, histone modification, and non-coding RNA, which are essential for genetic detection, early diagnosis, and assessment of treatment resistance in small B-cell lymphoma. As chronic lymphocytic leukemia/small lymphocytic lymphoma has already been reported in the literature, this article focuses on small B-cell lymphomas such as follicular lymphoma, mantle cell lymphoma, marginal zone lymphoma, and Waldenstrom macroglobulinemia. It discusses recent developments in epigenetic research to diagnose and treat this group of lymphomas. This review provides new ideas for the treatment and prognosis assessment of small B-cell lymphoma by exploring the connection between small B-cell lymphoma and epigenetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and materials

Not applicable.

Abbreviations

CLL:

Chronic lymphocytic leukaemia

SLL:

Small lymphocytic lymphoma

FL:

Follicular lymphoma

MCL:

Mantle cell lymphoma

MZL:

Marginal zone lymphoma

LPL:

Lymphoplasmacytic lymphoma

WM:

Waldenstrom macroglobulinemia

MALT:

Mucosa-associated lymphoid tissue MZL

NMZL:

Lymph node MZL

SMZL:

Splenic MZL

SAM:

S-adenosylmethionine

DNMT:

Methyltransferase

CGI:

CpG islands

SHM:

Somatic hypermutation

SIRT1:

Silent information regulator 1

MBC:

Memory-like B cells

PC:

Plasma cell

PTM:

Post-translational modifications

HAT:

Histone acetyltransferase

HDAC:

Histone deacetylase

HMT:

Histone methyltransferases

PRC2:

Polyoma repressor complex 2

H3K27:

Histone tris-lysine 27

RNA-seq:

RNA sequencing

References

  1. Swerdlow SH, Campo E, Pileri SA, Harris NL, Stein H, Siebert R, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016;127(20):2375–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Nadeu F, Diaz-Navarro A, Delgado J, Puente XS, Campo E. Genomic and epigenomic alterations in chronic lymphocytic leukemia. Annu Rev Pathol. 2020;15:149–77.

    Article  CAS  PubMed  Google Scholar 

  3. Guièze R, Wu CJ. Genomic and epigenomic heterogeneity in chronic lymphocytic leukemia. Blood. 2015;126(4):445–53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Martín-Subero JI, López-Otín C, Campo E. Genetic and epigenetic basis of chronic lymphocytic leukemia. Curr Opin Hematol. 2013;20(4):362–8.

    Article  PubMed  CAS  Google Scholar 

  5. Mansouri L, Wierzbinska JA, Plass C, Rosenquist R. Epigenetic deregulation in chronic lymphocytic leukemia: Clinical and biological impact. Semin Cancer Biol. 2018;51:1–11.

    Article  CAS  PubMed  Google Scholar 

  6. Li YY, Hu DZ, Tian C. Research progress on diagnosis and treatment of B cell chronic lymphoproliferative disease–review. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2018;26(4):1220–4.

    PubMed  Google Scholar 

  7. Burger JA, Landau DA, Taylor-Weiner A, Bozic I, Zhang H, Sarosiek K, et al. Clonal evolution in patients with chronic lymphocytic leukaemia developing resistance to BTK inhibition. Nat Commun. 2016;7:11589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Flavahan WA, Gaskell E, Bernstein BE. Epigenetic plasticity and the hallmarks of cancer. Science (New York, NY). 2017;357(6348):eaal2380.

    Article  CAS  Google Scholar 

  9. Memari F, Joneidi Z, Taheri B, Aval SF, Roointan A, Zarghami N. Epigenetics and Epi-miRNAs: potential markers/therapeutics in leukemia. Biomed Pharmacother. 2018;106:1668–77.

    Article  CAS  PubMed  Google Scholar 

  10. Moore LD, Le T, Fan G. DNA methylation and its basic function. Neuropsychopharmacology. 2013;38(1):23–38.

    Article  CAS  PubMed  Google Scholar 

  11. Dan J, Chen T. Genetic studies on mammalian DNA methyltransferases. Adv Exp Med Biol. 2016;945:123–50.

    Article  CAS  PubMed  Google Scholar 

  12. Dario LS, Rosa MA, Mariela E, Roberto G, Caterina C. Chromatin remodeling agents for cancer therapy. Rev Recent Clin Trials. 2008;3(3):192–203.

    Article  CAS  PubMed  Google Scholar 

  13. Wilson AS, Power BE, Molloy PL. DNA hypomethylation and human diseases. Biochem Biophys Acta. 2007;1775(1):138–62.

    CAS  PubMed  Google Scholar 

  14. Kretzmer H, Bernhart SH, Wang W, Haake A, Weniger MA, Bergmann AK, et al. DNA methylome analysis in Burkitt and follicular lymphomas identifies differentially methylated regions linked to somatic mutation and transcriptional control. Nat Genet. 2015;47(11):1316–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rossi D, Capello D, Gloghini A, Franceschetti S, Paulli M, Bhatia K, et al. Aberrant promoter methylation of multiple genes throughout the clinico-pathologic spectrum of B-cell neoplasia. Haematologica. 2004;89(2):154–64.

    CAS  PubMed  Google Scholar 

  16. Hayslip J, Montero A. Tumor suppressor gene methylation in follicular lymphoma: a comprehensive review. Mol Cancer. 2006;5:44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Giachelia M, Bozzoli V, D’Alò F, Tisi MC, Massini G, Maiolo E, et al. Quantification of DAPK1 promoter methylation in bone marrow and peripheral blood as a follicular lymphoma biomarker. J Mol Diagn. 2014;16(4):467–76.

    Article  CAS  PubMed  Google Scholar 

  18. Bennett LB, Schnabel JL, Kelchen JM, Taylor KH, Guo J, Arthur GL, et al. DNA hypermethylation accompanied by transcriptional repression in follicular lymphoma. Genes Chromosom Cancer. 2009;48(9):828–41.

    Article  CAS  PubMed  Google Scholar 

  19. Alhejaily A, Day AG, Feilotter HE, Baetz T, Lebrun DP. Inactivation of the CDKN2A tumor-suppressor gene by deletion or methylation is common at diagnosis in follicular lymphoma and associated with poor clinical outcome. Clin Cancer Res. 2014;20(6):1676–86.

    Article  CAS  PubMed  Google Scholar 

  20. Rogozin IB, Lada AG, Goncearenco A, Green MR, De S, Nudelman G, et al. Activation induced deaminase mutational signature overlaps with CpG methylation sites in follicular lymphoma and other cancers. Sci Rep. 2016;6:38133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Frazzi R, Zanetti E, Pistoni M, Tamagnini I, Valli R, Braglia L, et al. Methylation changes of SIRT1, KLF4, DAPK1 and SPG20 in B-lymphocytes derived from follicular and diffuse large B-cell lymphoma. Leuk Res. 2017;57:89–96.

    Article  CAS  PubMed  Google Scholar 

  22. Martin-Subero JI, Ammerpohl O, Bibikova M, Wickham-Garcia E, Agirre X, Alvarez S, et al. A comprehensive microarray-based DNA methylation study of 367 hematological neoplasms. PLoS One. 2009;4(9):e6986.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Leshchenko VV, Kuo PY, Shaknovich R, Yang DT, Gellen T, Petrich A, et al. Genomewide DNA methylation analysis reveals novel targets for drug development in mantle cell lymphoma. Blood. 2010;116(7):1025–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kirschbaum M, Frankel P, Popplewell L, Zain J, Delioukina M, Pullarkat V, et al. Phase II study of vorinostat for treatment of relapsed or refractory indolent non-Hodgkin’s lymphoma and mantle cell lymphoma. J Clin Oncol. 2011;29(9):1198–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Arribas AJ, Rinaldi A, Mensah AA, Kwee I, Cascione L, Robles EF, et al. DNA methylation profiling identifies two splenic marginal zone lymphoma subgroups with different clinical and genetic features. Blood. 2015;125(12):1922–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hunter ZR, Xu L, Yang G, Tsakmaklis N, Vos JM, Liu X, et al. Transcriptome sequencing reveals a profile that corresponds to genomic variants in Waldenström macroglobulinemia. Blood. 2016;128(6):827–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Roos-Weil D, Giacopelli B, Armand M, Della-Valle V, Ghamlouch H, Decaudin C, et al. Identification of 2 DNA methylation subtypes of Waldenström macroglobulinemia with plasma and memory B-cell features. Blood. 2020;136(5):585–95.

    PubMed  Google Scholar 

  28. Fan J, Krautkramer KA, Feldman JL, Denu JM. Metabolic regulation of histone post-translational modifications. ACS Chem Biol. 2015;10(1):95–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Schiza V, Molina-Serrano D, Kyriakou D, Hadjiantoniou A, Kirmizis A. N-alpha-terminal acetylation of histone H4 regulates arginine methylation and ribosomal DNA silencing. PLoS Genet. 2013;9(9):e1003805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kuo MH, Allis CD. Roles of histone acetyltransferases and deacetylases in gene regulation. BioEssays. 1998;20(8):615–26.

    Article  CAS  PubMed  Google Scholar 

  31. Pasqualucci L, Dominguez-Sola D, Chiarenza A, Fabbri G, Grunn A, Trifonov V, et al. Inactivating mutations of acetyltransferase genes in B-cell lymphoma. Nature. 2011;471(7337):189–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jiang Y, Ortega-Molina A, Geng H, Ying HY, Hatzi K, Parsa S, et al. CREBBP inactivation promotes the development of HDAC3-dependent lymphomas. Cancer Discov. 2017;7(1):38–53.

    Article  CAS  PubMed  Google Scholar 

  33. Desmots F, Roussel M, Pangault C, Llamas-Gutierrez F, Pastoret C, Guiheneuf E, et al. Pan-HDAC inhibitors restore PRDM1 response to IL21 in CREBBP-mutated follicular lymphoma. Clin Cancer Res. 2019;25(2):735–46.

    Article  CAS  PubMed  Google Scholar 

  34. Gao L, Cueto MA, Asselbergs F, Atadja P. Cloning and functional characterization of HDAC11, a novel member of the human histone deacetylase family. J Biol Chem. 2002;277(28):25748–55.

    Article  CAS  PubMed  Google Scholar 

  35. Knutson SK, Wigle TJ, Warholic NM, Sneeringer CJ, Allain CJ, Klaus CR, et al. A selective inhibitor of EZH2 blocks H3K27 methylation and kills mutant lymphoma cells. Nat Chem Biol. 2012;8(11):890–6.

    Article  CAS  PubMed  Google Scholar 

  36. Vaswani RG, Gehling VS, Dakin LA, Cook AS, Nasveschuk CG, Duplessis M, et al. Identification of (R)-N-((4-Methoxy-6-methyl-2-oxo-1,2-dihydropyridin-3-yl)methyl)-2-methyl-1-(1-(1-(2,2,2-trifluoroethyl)piperidin-4-yl)ethyl)-1H-indole-3-carboxamide (CPI-1205), a potent and selective inhibitor of histone methyltransferase EZH2, suitable for phase I clinical trials for B-Cell lymphomas. J Med Chem. 2016;59(21):9928–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. McCabe MT, Mohammad HP, Barbash O, Kruger RG. Targeting histone methylation in cancer. Cancer J (Sudbury, Mass). 2017;23(5):292–301.

    Article  CAS  Google Scholar 

  38. Gil VS, Bhagat G, Howell L, Zhang J, Kim CH, Stengel S, et al. Deregulated expression of HDAC9 in B cells promotes development of lymphoproliferative disease and lymphoma in mice. Dis Model Mech. 2016;9(12):1483–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Lue JK, O’Connor OA, Bertoni F. Targeting pathogenic mechanisms in marginal zone lymphoma: from concepts and beyond. Ann Lymphoma. 2020;4:7.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Hatjiharissi E, Ngo H, Leontovich AA, Leleu X, Timm M, Melhem M, et al. Proteomic analysis of waldenstrom macroglobulinemia. Can Res. 2007;67(8):3777–84.

    Article  CAS  Google Scholar 

  41. Roccaro AM, Sacco A, Jia X, Azab AK, Maiso P, Ngo HT, et al. microRNA-dependent modulation of histone acetylation in Waldenstrom macroglobulinemia. Blood. 2010;116(9):1506–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kugel JF, Goodrich JA. Non-coding RNAs: key regulators of mammalian transcription. Trends Biochem Sci. 2012;37(4):144–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Khraiwesh B, Arif MA, Seumel GI, Ossowski S, Weigel D, Reski R, et al. Transcriptional control of gene expression by microRNAs. Cell. 2010;140(1):111–22.

    Article  CAS  PubMed  Google Scholar 

  44. Spizzo R, Almeida MI, Colombatti A, Calin GA. Long non-coding RNAs and cancer: a new frontier of translational research? Oncogene. 2012;31(43):4577–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. He J, Xie Q, Xu H, Li J, Li Y. Circular RNAs and cancer. Cancer Lett. 2017;396:138–44.

    Article  CAS  PubMed  Google Scholar 

  46. Wang W, Corrigan-Cummins M, Hudson J, Maric I, Simakova O, Neelapu SS, et al. MicroRNA profiling of follicular lymphoma identifies microRNAs related to cell proliferation and tumor response. Haematologica. 2012;97(4):586–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Thompson MA, Edmonds MD, Liang S, McClintock-Treep S, Wang X, Li S, et al. miR-31 and miR-17-5p levels change during transformation of follicular lymphoma. Hum Pathol. 2016;50:118–26.

    Article  CAS  PubMed  Google Scholar 

  48. Zhao JJ, Lin J, Lwin T, Yang H, Guo J, Kong W, et al. microRNA expression profile and identification of miR-29 as a prognostic marker and pathogenetic factor by targeting CDK6 in mantle cell lymphoma. Blood. 2010;115(13):2630–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Cai J, Liu X, Cheng J, Li Y, Huang X, Li Y, et al. MicroRNA-200 is commonly repressed in conjunctival MALT lymphoma, and targets cyclin E2. Graefe’s Arch Clin Exp Ophthalmol. 2012;250(4):523–31.

    Article  CAS  Google Scholar 

  50. Zhu XW, Wang J, Zhu MX, Wang YF, Yang SY, Ke XY. MicroRNA-506 inhibits the proliferation and invasion of mantle cell lymphoma cells by targeting B7H3. Biochem Biophys Res Commun. 2019;508(4):1067–73.

    Article  CAS  PubMed  Google Scholar 

  51. Arribas AJ, Campos-Martín Y, Gómez-Abad C, Algara P, Sánchez-Beato M, Rodriguez-Pinilla MS, et al. Nodal marginal zone lymphoma: gene expression and miRNA profiling identify diagnostic markers and potential therapeutic targets. Blood. 2012;119(3):e9–21.

    Article  CAS  PubMed  Google Scholar 

  52. Bouteloup M, Verney A, Rachinel N, Callet-Bauchu E, Ffrench M, Coiffier B, et al. MicroRNA expression profile in splenic marginal zone lymphoma. Br J Haematol. 2012;156(2):279–81.

    Article  CAS  PubMed  Google Scholar 

  53. Arribas AJ, Gómez-Abad C, Sánchez-Beato M, Martinez N, Dilisio L, Casado F, et al. Splenic marginal zone lymphoma: comprehensive analysis of gene expression and miRNA profiling. Mod Pathol. 2013;26(7):889–901.

    Article  CAS  PubMed  Google Scholar 

  54. Zhou K, Yi S, Yu Z, Li Z, Wang Y, Zou D, et al. MicroRNA-223 expression is uniformly down-regulated in B cell lymphoproliferative disorders and is associated with poor survival in patients with chronic lymphocytic leukemia. Leuk Lymphoma. 2012;53(6):1155–61.

    Article  CAS  PubMed  Google Scholar 

  55. Pastore A, Gaiti F, Lu SX, Brand RM, Kulm S, Chaligne R, et al. Corrupted coordination of epigenetic modifications leads to diverging chromatin states and transcriptional heterogeneity in CLL. Nat Commun. 2019;10(1):1874.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Roccaro AM, Sacco A, Chen C, Runnels J, Leleu X, Azab F, et al. microRNA expression in the biology, prognosis, and therapy of Waldenström macroglobulinemia. Blood. 2009;113(18):4391–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Fulciniti M, Amodio N, Bandi RL, Cagnetta A, Samur MK, Acharya C, et al. miR-23b/SP1/c-myc forms a feed-forward loop supporting multiple myeloma cell growth. Blood Cancer J. 2016;6(1):e380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wang GG, Konze KD, Tao J. Polycomb genes, miRNA, and their deregulation in B-cell malignancies. Blood. 2015;125(8):1217–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Roisman A, Castellano G, Navarro A, Gonzalez-Farre B, Pérez-Galan P, Esteve-Codina A, et al. Differential expression of long non-coding RNAs are related to proliferation and histological diversity in follicular lymphomas. Br J Haematol. 2019;184(3):373–83.

    Article  CAS  PubMed  Google Scholar 

  60. Kienle D, Katzenberger T, Ott G, Saupe D, Benner A, Kohlhammer H, et al. Quantitative gene expression deregulation in mantle-cell lymphoma: correlation with clinical and biologic factors. J Clin Oncol. 2007;25(19):2770–7.

    Article  CAS  PubMed  Google Scholar 

  61. Garding A, Bhattacharya N, Claus R, Ruppel M, Tschuch C, Filarsky K, et al. Epigenetic upregulation of lncRNAs at 13q14.3 in leukemia is linked to the In Cis downregulation of a gene cluster that targets NF-kB. PLoS Genet. 2013;9(4):e1003373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wang F, Cui D, Zhang Q, Shao Y, Zheng B, Chen L, et al. LncRNA00492 is required for marginal zone B-cell development. Immunology. 2022;165(1):88–98.

    Article  CAS  PubMed  Google Scholar 

  63. Yang Q, Du WW, Wu N, Yang W, Awan FM, Fang L, et al. A circular RNA promotes tumorigenesis by inducing c-myc nuclear translocation. Cell Death Differ. 2017;24(9):1609–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Eckschlager T, Plch J, Stiborova M, Hrabeta J. Histone deacetylase inhibitors as anticancer drugs. Int J Mol Sci. 2017;18(7):1414.

    Article  PubMed Central  CAS  Google Scholar 

  65. Chen IC, Sethy B, Liou JP. Recent Update of HDAC Inhibitors in Lymphoma. Front Cell Dev Biol. 2020;8:576391.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Cogan JC, Liu Y, Amengual JE. Hypomethylating agents in lymphoma. Curr Treat Options Oncol. 2020;21(8):61.

    Article  PubMed  Google Scholar 

  67. Tiper IV, Webb TJ. Histone deacetylase inhibitors enhance CD1d-dependent NKT cell responses to lymphoma. Cancer Immunol Immunother. 2016;65(11):1411–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Bradshaw G, Sutherland HG, Haupt LM, Griffiths LR. Dysregulated MicroRNA expression profiles and potential cellular, circulating and polymorphic biomarkers in non-Hodgkin lymphoma. Genes. 2016;7(12):130.

    Article  PubMed Central  CAS  Google Scholar 

  69. Wu B, Li J, Wang H, Wu Q, Liu H. MiR-132-3p serves as a tumor suppressor in mantle cell lymphoma via directly targeting SOX11. Naunyn Schmiedebergs Arch Pharmacol. 2020;393(11):2197–208.

    Article  CAS  PubMed  Google Scholar 

  70. Gebauer N, Kuba J, Senft A, Schillert A, Bernard V, Thorns C. MicroRNA-150 Is up-regulated in extranodal marginal zone lymphoma of MALT type. Cancer Genomics Proteomics. 2014;11(1):51–6.

    PubMed  Google Scholar 

  71. Di Lisio L, Martinez N, Montes-Moreno S, Piris-Villaespesa M, Sanchez-Beato M, Piris MA. The role of miRNAs in the pathogenesis and diagnosis of B-cell lymphomas. Blood. 2012;120(9):1782–90.

    Article  PubMed  CAS  Google Scholar 

  72. Ferrajoli A, Shanafelt TD, Ivan C, Shimizu M, Rabe KG, Nouraee N, et al. Prognostic value of miR-155 in individuals with monoclonal B-cell lymphocytosis and patients with B chronic lymphocytic leukemia. Blood. 2013;122(11):1891–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Musilova K, Mraz M. MicroRNAs in B-cell lymphomas: how a complex biology gets more complex. Leukemia. 2015;29(5):1004–17.

    Article  CAS  PubMed  Google Scholar 

  74. Saito Y, Suzuki H, Tsugawa H, Imaeda H, Matsuzaki J, Hirata K, et al. Overexpression of miR-142-5p and miR-155 in gastric mucosa-associated lymphoid tissue (MALT) lymphoma resistant to Helicobacter pylori eradication. PLoS One. 2012;7(11):e47396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lou X, Fu J, Zhao X, Zhuansun X, Rong C, Sun M, et al. MiR-7e-5p downregulation promotes transformation of low-grade follicular lymphoma to aggressive lymphoma by modulating an immunosuppressive stroma through the upregulation of FasL in M1 macrophages. J Exp Clin Cancer Res. 2020;39(1):237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Husby S, Ralfkiaer U, Garde C, Zandi R, Ek S, Kolstad A, et al. miR-18b overexpression identifies mantle cell lymphoma patients with poor outcome and improves the MIPI-B prognosticator. Blood. 2015;125(17):2669–77.

    Article  CAS  PubMed  Google Scholar 

  77. He M, Gao L, Zhang S, Tao L, Wang J, Yang J, et al. Prognostic significance of miR-34a and its target proteins of FOXP1, p53, and BCL2 in gastric MALT lymphoma and DLBCL. Gastric Cancer. 2014;17(3):431–41.

    Article  CAS  PubMed  Google Scholar 

  78. Pan Y, Li H, Guo Y, Luo Y, Li H, Xu Y, et al. A pilot study of long noncoding RNA expression profiling by microarray in follicular lymphoma. Gene. 2016;577(2):132–9.

    Article  CAS  PubMed  Google Scholar 

  79. Tang X, Long Y, Xu L, Yan X. LncRNA MORT inhibits cancer cell proliferation and promotes apoptosis in mantle cell lymphoma by upregulating miRNA-16. Cancer Manag Res. 2020;12:2119–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Zhang J, Wei J, Wang Z, Feng Y, Wei Z, Hou X, et al. Transcriptome hallmarks in Helicobacter pylori infection influence gastric cancer and MALT lymphoma. Epigenomics. 2020;12(8):661–71.

    Article  CAS  PubMed  Google Scholar 

  81. Heuston EF, Lemon KT, Arceci RJ. The beginning of the road for non-coding RNAs in normal hematopoiesis and hematologic malignancies. Front Genet. 2011;2:94.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Ji T, Chen Q, Tao S, Shi Y, Chen Y, Shen L, et al. The research progress of circular RNAs in hematological malignancies. Hematology (Amsterdam, Netherlands). 2019;24(1):727–31.

    CAS  Google Scholar 

  83. Lan Q, Liu PY, Haase J, Bell JL, Hüttelmaier S, Liu T. The critical role of RNA m(6)A methylation in cancer. Can Res. 2019;79(7):1285–92.

    Article  CAS  Google Scholar 

  84. Zhang W, He X, Hu J, Yang P, Liu C, Wang J, et al. Dysregulation of N(6)-methyladenosine regulators predicts poor patient survival in mantle cell lymphoma. Oncol Lett. 2019;18(4):3682–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Wu G, Suo C, Yang Y, Shen S, Sun L, Li ST, et al. MYC promotes cancer progression by modulating m(6) A modifications to suppress target gene translation. EMBO Rep. 2021;22(3):e51519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

This work was supported by the National Natural Science Foundation of China (82070175), Natural Science Foundation of Hunan Province (2021JJ30937), Scientific program of Health Commission of Hunan Province (2022030442723), and Changsha Municipal Natural Science Foundation (kq2014234).

Author information

Authors and Affiliations

Authors

Contributions

XR wrote the review. RZ, HZ, CY and ZW discussed the review. All authors proofread the review. All authors contributed to the article and approved the submitted version.

Corresponding authors

Correspondence to Ruijuan Li or Zhao Cheng.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruan, X., Zhang, R., Zhu, H. et al. Research progress on epigenetics of small B-cell lymphoma. Clin Transl Oncol 24, 1501–1514 (2022). https://doi.org/10.1007/s12094-022-02820-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-022-02820-z

Keywords

Navigation