Skip to main content

Advertisement

Log in

The role of the inflammasome and its related pathways in ovarian cancer

  • Review Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Ovarian cancer (OC) is the most lethal tumor of the female reproductive tract and one of the most prevalent causes of death among female cancer patients. The absence of suitable procedures for early diagnosis, chemoresistance, and limited surgical debulking are all contributing to poor survival in patients. Despite aggressive treatments, the majority of patients have a recurrence within 16–22 months. Inflammasomes are multimeric protein complexes that play a major role in the innate immune system and inflammation. The overexpression of inflammasome-related pathways, including NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3), Absent in melanoma 2 (AIM2), caspase-1, and Interleukin (IL)-1 have been reported in OC patients and in vitro cell lines. Therefore, inflammasome-related genes and protein might have a role in OC pathogenesis. Considering the potential relationship between inflammasome and OC, this study aimed to provide a literature-based review to explain the role of inflammasome and inflammation in cancer progression in OC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ASC:

Apoptosis-associated speck-like protein containing a caspase-recruitment domain

OC:

Ovarian cancer

AIM2:

Absent in melanoma 2

DAMP:

Damage-associated molecular patterns

EMT:

Epithelial–mesenchymal transition

HMGB1:

High-mobility group box 1

ICD:

Immunogenic cell death

IHC:

Immunohistochemistry

IL:

Interleukin

LRR:

Leucine-rich repeat

NLR:

Nucleotide-binding domain and leucine-rich-repeat-containing proteins

NLRP3:

NOD-, LRR- and pyrin domain-containing protein 3

PI3K:

Phosphoinositide 3-kinases

PYCARD:

PYD and CARD domain-containing

TLR:

Toll-like receptor

References

  1. Jayson GC, Kohn EC, Kitchener HC, Ledermann JA. Ovarian cancer. The Lancet. 2014;384(9951):1376–88.

    Article  Google Scholar 

  2. Quirk J, Kupinski J. Chronic infection, inflammation, andepithelial ovarian cancer. Med Hypotheses. 2001;57(4):426–8.

    Article  CAS  PubMed  Google Scholar 

  3. Kisielewski R, Mazurek A, Laudański P, Tołwińska A. Inflammation and ovarian cancer–current views. Ginekol Pol. 2013;84(4):293.

    Article  PubMed  Google Scholar 

  4. Macciò A, Madeddu C. Inflammation and ovarian cancer. Cytokine. 2012;58(2):133–47.

    Article  PubMed  CAS  Google Scholar 

  5. Hoffman HM, Broderick L. The role of the inflammasome in patients with autoinflammatory diseases. J Allergy Clin Immunol. 2016;138(1):3–14.

    Article  CAS  PubMed  Google Scholar 

  6. Asadi G, Varmaziar FR, Karimi M, Rajabinejad M, Ranjbar S, Karaji AG, et al. Determination of the transcriptional level of long non-coding RNA NEAT-1, downstream target microRNAs, and genes targeted by microRNAs in diabetic neuropathy patients. Immunol Lett. 2021;232:20–6.

    Article  CAS  PubMed  Google Scholar 

  7. Kantono M, Guo B. Inflammasomes and cancer: the dynamic role of the inflammasome in tumor development. Front Immunol. 2017;8:1132.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Moossavi M, Parsamanesh N, Bahrami A, Atkin SL, Sahebkar A. Role of the NLRP3 inflammasome in cancer. Mol Cancer. 2018;17(1):1–13.

    Article  CAS  Google Scholar 

  9. Chang C-M, Chuang C-M, Wang M-L, Yang Y-P, Chuang J-H, Yang M-J, et al. Gene set—based integrative analysis revealing two distinct functional regulation patterns in four common subtypes of epithelial ovarian cancer. Int J Mol Sci. 2016;17(8):1272.

    Article  PubMed Central  CAS  Google Scholar 

  10. Chang C-M, Yang Y-P, Chuang J-H, Chuang C-M, Lin T-W, Wang P-H, et al. Discovering the deregulated molecular functions involved in malignant transformation of endometriosis to endometriosis-associated ovarian carcinoma using a data-driven, function-based analysis. Int J Mol Sci. 2017;18(11):2345.

    Article  PubMed Central  CAS  Google Scholar 

  11. Su K-M, Wang P-H, Yu M-H, Chang C-M, Chang C-C. The recent progress and therapy in endometriosis-associated ovarian cancer. J Chin Med Assoc. 2020;83(3):227–32.

    Article  CAS  PubMed  Google Scholar 

  12. Chang C-M, Wang M-L, Lu K-H, Yang Y-P, Juang C-M, Wang P-H, et al. Integrating the dysregulated inflammasome-based molecular functionome in the malignant transformation of endometriosis-associated ovarian carcinoma. Oncotarget. 2018;9(3):3704.

    Article  PubMed  Google Scholar 

  13. Fucikova J, Moserova I, Urbanova L, Bezu L, Kepp O, Cremer I, et al. Prognostic and predictive value of DAMPs and DAMP-associated processes in cancer. Front Immunol. 2015;6:402.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Machado LR, Moseley PM, Moss R, Deen S, Nolan C, Spendlove I, et al. High mobility group protein B1 is a predictor of poor survival in ovarian cancer. Oncotarget. 2017;8(60):101215.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Shan W, Liu J. Inflammation: a hidden path to breaking the spell of ovarian cancer. Cell Cycle. 2009;8(19):3107–11.

    Article  CAS  PubMed  Google Scholar 

  16. Keita M, Bessette P, Pelmus M, Ainmelk Y, Aris A. Expression of interleukin-1 (IL-1) ligands system in the most common endometriosis-associated ovarian cancer subtypes. J Ovarian Res. 2010;3(1):1–8.

    Article  CAS  Google Scholar 

  17. Zeisler H, Tempfer C, Joura EA, Sliutz G, Koelbl H, Wagner O, et al. Serum interleukin 1 in ovarian cancer patients. Eur J Cancer (Oxford, England: 1990). 1998;34(6):931–3.

    CAS  Google Scholar 

  18. Rathinam VA, Chan FK-M. Inflammasome, inflammation, and tissue homeostasis. Trends Mol Med. 2018;24(3):304–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Momenimovahed Z, Tiznobaik A, Taheri S, Salehiniya H. Ovarian cancer in the world: epidemiology and risk factors. Int J Women’s Health. 2019;11:287.

    Article  Google Scholar 

  20. Reid B, Permuth J, Sellers T. Epidemiology of ovarian cancer: a review. Cancer Biol Med. 2017;14:9–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jacobs IJ, Menon U. Progress and challenges in screening for early detection of ovarian cancer. Mol Cell Proteom. 2004;3(4):355–66.

    Article  CAS  Google Scholar 

  22. Badgwell D, Bast RC Jr. Early detection of ovarian cancer. Dis Mark. 2007;23(56):397–410.

    Article  CAS  Google Scholar 

  23. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Cancer J Clin. 2018;68(6):394–424.

    Google Scholar 

  24. Momenimovahed Z, Tiznobaik A, Taheri S, Salehiniya H. Ovarian cancer in the world: epidemiology and risk factors. Int J Womens Health. 2019;11:287–99.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hunn J, Rodriguez GC. Ovarian cancer: etiology, risk factors, and epidemiology. Clin Obstet Gynecol. 2012;55(1):3–23.

    Article  PubMed  Google Scholar 

  26. Torre LA, Trabert B, DeSantis CE, Miller KD, Samimi G, Runowicz CD, et al. Ovarian cancer statistics, 2018. CA: Cancer J Clin. 2018;68(4):284–96.

    Google Scholar 

  27. McCluggage WG. Morphological subtypes of ovarian carcinoma: a review with emphasis on new developments and pathogenesis. Pathology. 2011;43(5):420–32.

    Article  CAS  PubMed  Google Scholar 

  28. Prat J. Ovarian carcinomas: five distinct diseases with different origins, genetic alterations, and clinicopathological features. Virchows Arch. 2012;460(3):237–49.

    Article  PubMed  Google Scholar 

  29. Reid BM, Permuth JB, Sellers TA. Epidemiology of ovarian cancer: a review. Cancer Biol Med. 2017;14(1):9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Odicino F, Pecorelli S, Zigliani L, Creasman WT. History of the FIGO cancer staging system. Int J Gynecol Obstet. 2008;101(2):205–10.

    Article  Google Scholar 

  31. Rajabinejad M, Ranjbar S, Afshar Hezarkhani L, Salari F, Gorgin Karaji A, Rezaiemanesh A. Regulatory T cells for amyotrophic lateral sclerosis/motor neuron disease: a clinical and preclinical systematic review. J Cell Physiol. 2020;235(6):5030–40.

    Article  CAS  PubMed  Google Scholar 

  32. Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006;124(4):783–801.

    Article  CAS  PubMed  Google Scholar 

  33. Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell. 2010;140(6):805–20.

    Article  CAS  PubMed  Google Scholar 

  34. Kalmarzi RN, Rajabinejad M, Lotfi R. Immune semaphorins: Crucial regulatory signals and novel therapeutic targets in asthma and allergic diseases. Eur J Pharmacol. 2020;881:173209.

    Article  CAS  PubMed  Google Scholar 

  35. Sellegounder D, Zafari P, Rajabinejad M, Taghadosi M, Kapahi P. Advanced glycation end products (AGEs) and its receptor, RAGE, modulate age-dependent COVID-19 morbidity and mortality. A review and hypothesis. Int Immunopharmacol. 2021;98:107806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Franchi L, Eigenbrod T, Muñoz-Planillo R, Nuñez G. The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nat Immunol. 2009;10(3):241–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sharma D, Kanneganti T-D. The cell biology of inflammasomes: mechanisms of inflammasome activation and regulation. J Cell Biol. 2016;213(6):617–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fernandes-Alnemri T, Wu J, Yu J, Datta P, Miller B, Jankowski W, et al. The pyroptosome: a supramolecular assembly of ASC dimers mediating inflammatory cell death via caspase-1 activation. Cell Death Differ. 2007;14(9):1590–604.

    Article  CAS  PubMed  Google Scholar 

  39. Fink SL, Cookson BT. Caspase-1-dependent pore formation during pyroptosis leads to osmotic lysis of infected host macrophages. Cell Microbiol. 2006;8(11):1812–25.

    Article  CAS  PubMed  Google Scholar 

  40. Shi J, Zhao Y, Wang K, Shi X, Wang Y, Huang H, et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature. 2015;526(7575):660–5.

    Article  CAS  PubMed  Google Scholar 

  41. He W-T, Wan H, Hu L, Chen P, Wang X, Huang Z, et al. Gasdermin D is an executor of pyroptosis and required for interleukin-1β secretion. Cell Res. 2015;25(12):1285–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bauernfeind FG, Horvath G, Stutz A, Alnemri ES, MacDonald K, Speert D, et al. Cutting edge: NF-κB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J Immunol. 2009;183(2):787–91.

    Article  CAS  PubMed  Google Scholar 

  43. Franchi L, Eigenbrod T, Núñez G. Cutting edge: TNF-α mediates sensitization to ATP and silica via the NLRP3 inflammasome in the absence of microbial stimulation. J Immunol. 2009;183(2):792–6.

    Article  CAS  PubMed  Google Scholar 

  44. Swanson KV, Deng M, Ting JP-Y. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat Rev Immunol. 2019;19(8):477–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mokhtari Y, Pourbagheri-Sigaroodi A, Zafari P, Bagheri N, Ghaffari SH, Bashash D. Toll-like receptors (TLRs): an old family of immune receptors with a new face in cancer pathogenesis. J Cell Mol Med. 2021;25(2):639–51.

    Article  CAS  PubMed  Google Scholar 

  46. da Conceição BL, Silva LM, da Silva Ramos APÁ, Piedade JB, Vidigal PVT, Traiman P, et al. Single CpG island methylation is not sufficient to maintain the silenced expression of CASPASE-8 apoptosis-related gene among women with epithelial ovarian cancer. Biomed Pharmacother. 2014;68(1):87–91.

    Article  CAS  Google Scholar 

  47. Gurung P, Anand PK, Malireddi RS, Walle LV, Van Opdenbosch N, Dillon CP, et al. FADD and caspase-8 mediate priming and activation of the canonical and noncanonical Nlrp3 inflammasomes. J Immunol. 2014;192(4):1835–46.

    Article  CAS  PubMed  Google Scholar 

  48. Ranjan K, Pathak C. FADD regulates NF-κB activation and promotes ubiquitination of cFLIP L to induce apoptosis. Sci Rep. 2016;6(1):1–16.

    Article  CAS  Google Scholar 

  49. Singel KL, Grzankowski KS, Khan ANH, Grimm MJ, D’Auria AC, Morrell K, et al. Mitochondrial DNA in the tumour microenvironment activates neutrophils and is associated with worse outcomes in patients with advanced epithelial ovarian cancer. Br J Cancer. 2019;120(2):207–17.

    Article  CAS  PubMed  Google Scholar 

  50. Bi F, Jiang Z, Park W, Hartwich TM, Ge Z, Chong KY, et al. A benzenesulfonamide-based mitochondrial uncoupler induces endoplasmic reticulum stress and immunogenic cell death in epithelial ovarian cancer. Mol Cancer Ther. 2021;20:2398.

    Article  CAS  PubMed  Google Scholar 

  51. Lau TS, Chan L-Y, Man G-W, Wong CH, Lee J-S, Yim SF, et al. Paclitaxel induces immunogenic cell death in ovarian cancer via TLR4/IKK2/SNARE-dependent exocytosis. Cancer Immunol Res. 2020;8:1099.

    Article  CAS  PubMed  Google Scholar 

  52. Serrano-del Valle A, Anel A, Naval J, Marzo I. Immunogenic cell death and immunotherapy of multiple myeloma. Front Cell Dev Biol. 2019;7:50.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Zhou J, Wang G, Chen Y, Wang H, Hua Y, Cai Z. Immunogenic cell death in cancer therapy: present and emerging inducers. J Cell Mol Med. 2019;23(8):4854–65.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Fumet J-D, Limagne E, Thibaudin M, Ghiringhelli F. Immunogenic cell death and elimination of immunosuppressive cells: a double-edged sword of chemotherapy. Cancers. 2020;12(9):2637.

    Article  CAS  PubMed Central  Google Scholar 

  55. Kielbik M, Szulc-Kielbik I, Klink M. Calreticulin—multifunctional chaperone in immunogenic cell death: potential significance as a prognostic biomarker in ovarian cancer patients. Cells. 2021;10(1):130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhang Y, Yang JW, Ren X, Yang J-M. NAC1 and HMGB1 enter a partnership for manipulating autophagy. Autophagy. 2011;7(12):1557–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Li Y, Tian J, Fu X, Chen Y, Zhang W, Yao H, et al. Serum high mobility group box protein 1 as a clinical marker for ovarian cancer. Neoplasma. 2014;61(5):579–84.

    Article  CAS  PubMed  Google Scholar 

  58. Heath O, Berlato C, Maniati E, Lakhani A, Pegrum C, Kotantaki P, et al. Chemotherapy induces tumor-associated macrophages that aid adaptive immune responses in ovarian cancer. Cancer Immunol Res. 2021;9(6):665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wu H, Liu J, Zhang Y, Li Q, Wang Q, Gu Z. miR-22 suppresses cell viability and EMT of ovarian cancer cells via NLRP3 and inhibits PI3K/AKT signaling pathway. Clin Transl Oncol. 2021;23(2):257–64.

    Article  CAS  PubMed  Google Scholar 

  60. Hsu P-C, Chao T-K, Chou Y-C, Yu M-H, Wang Y-C, Lin Y-H, et al. AIM2 inflammasome in tumor cells as a biomarker for predicting the treatment response to antiangiogenic therapy in epithelial ovarian cancer patients. J Clin Med. 2021;10(19):4529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wang X, Wang S-S, Zhou L, Yu L, Zhang L-M. A network-pathway based module identification for predicting the prognosis of ovarian cancer patients. J Ovarian Res. 2016;9(1):1–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Li B-Y, Mohanraj D, Olson MC, Moradi M, Twiggs L, Carson LF, et al. Human ovarian epithelial cancer cells cultured in vitro express both interleukin 1α and β genes. Can Res. 1992;52(8):2248–52.

    CAS  Google Scholar 

  63. Guo B, Fu S, Zhang J, Liu B, Li Z. Targeting inflammasome/IL-1 pathways for cancer immunotherapy. Sci Rep. 2016;6(1):1–12.

    CAS  Google Scholar 

  64. Woolery KT, Mohamed M, Linger RJ, Dobrinski KP, Roman J, Kruk PA. BRCA1 185delAG mutation enhances interleukin-1β expression in ovarian surface epithelial cells. BioMed Res Int. 2015;2015:1.

    Article  CAS  Google Scholar 

  65. Li J, Yang C, Li Y, Chen A, Li L, You Z. LncRNA GAS5 suppresses ovarian cancer by inducing inflammasome formation. Biosci Rep. 2018.https://doi.org/10.1042/BSR20171150.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Luborsky J, Barua A, Edassery S, Bahr JM, Edassery SL. Inflammasome expression is higher in ovarian tumors than in normal ovary. PloS One. 2020;15(1):e0227081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Terasawa K, Sagae S, Toyota M, Tsukada K, Ogi K, Satoh A, et al. Epigenetic inactivation of TMS1/ASC in ovarian cancer. Clin Cancer Res. 2004;10(6):2000–6.

    Article  CAS  PubMed  Google Scholar 

  68. Chang C-M, Wang M-L, Lu K-H, Yang Y-P, Juang C-M, Wang P-H, et al. Integrating the dysregulated inflammasome-based molecular functionome in the malignant transformation of endometriosis-associated ovarian carcinoma. Oncotarget. 2017;9(3):3704–26.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Nossa CW, Jain P, Tamilselvam B, Gupta VR, Chen L-F, Schreiber V, et al. Activation of the abundant nuclear factor poly (ADP-ribose) polymerase-1 by Helicobacter pylori. Proc Natl Acad Sci. 2009;106(47):19998–20003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sakamoto K, Tominaga Y, Yamauchi K, Nakatsu Y, Sakumi K, Yoshiyama K, et al. MUTYH-null mice are susceptible to spontaneous and oxidative stress–induced intestinal tumorigenesis. Can Res. 2007;67(14):6599–604.

    Article  CAS  Google Scholar 

  71. Russo MT, De Luca G, Degan P, Parlanti E, Dogliotti E, Barnes DE, et al. Accumulation of the oxidative base lesion 8-hydroxyguanine in DNA of tumor-prone mice defective in both the Myh and Ogg1 DNA glycosylases. Can Res. 2004;64(13):4411–4.

    Article  CAS  Google Scholar 

  72. Dluzniewski PJ, Wang M-H, Zheng SL, De Marzo AM, Drake CG, Fedor HL, et al. Variation in IL10 and other genes involved in the immune response and in oxidation and prostate cancer recurrence. Cancer Epidemiol Prev Biomark. 2012;21(10):1774–82.

    Article  CAS  Google Scholar 

  73. Kidane D, Chae WJ, Czochor J, Eckert KA, Glazer PM, Bothwell ALM, et al. Interplay between DNA repair and inflammation, and the link to cancer. Crit Rev Biochem Mol Biol. 2014;49(2):116–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ju M, Bi J, Wei Q, Jiang L, Guan Q, Zhang M, et al. Pan-cancer analysis of NLRP3 inflammasome with potential implications in prognosis and immunotherapy in human cancer. Brief Bioinform. 2021;22(4):bbaa345.

    Article  PubMed  CAS  Google Scholar 

  75. Saponaro C, Scarpi E, Sonnessa M, Cioffi A, Buccino F, Giotta F, et al. Prognostic value of NLRP3 inflammasome and TLR4 expression in breast cancer patients. Front Oncol. 2021;11:705331.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Burns B, Grindlay K, Dennis A. Women’s awareness of, interest in, and experiences with long-acting reversible and permanent contraception. Womens Health Issues. 2015;25(3):224–31.

    Article  PubMed  Google Scholar 

  77. Yin S, Lan C, Pei H, Zhu Z. Expression of interleukin 1β in gastric cancer tissue and its effects on gastric cancer. Onco Targets Ther. 2016;9:31.

    CAS  PubMed  Google Scholar 

  78. Chen LC, Wang LJ, Tsang NM, Ojcius DM, Chen CC, OuYang CN, et al. Tumour inflammasome-derived IL-1β recruits neutrophils and improves local recurrence-free survival in EBV-induced nasopharyngeal carcinoma. EMBO Mol Med. 2012;4(12):1276–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Holen I, Lefley DV, Francis SE, Rennicks S, Bradbury S, Coleman RE, et al. IL-1 drives breast cancer growth and bone metastasis in vivo. Oncotarget. 2016;7(46):75571.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Lamkanfi M, Mueller JL, Vitari AC, Misaghi S, Fedorova A, Deshayes K, et al. Glyburide inhibits the cryopyrin/Nalp3 inflammasome. J Cell Biol. 2009;187(1):61–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Marchetti C, Toldo S, Chojnacki J, Mezzaroma E, Liu K, Salloum FN, et al. Pharmacologic inhibition of the NLRP3 inflammasome preserves cardiac function after ischemic and non-ischemic injury in the mouse. J Cardiovasc Pharmacol. 2015;66(1):1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kuwar R, Rolfe A, Di L, Xu H, He L, Jiang Y, et al. A novel small molecular NLRP3 inflammasome inhibitor alleviates neuroinflammatory response following traumatic brain injury. J Neuroinflammation. 2019;16(1):1–14.

    Article  Google Scholar 

  83. Liu W, Guo W, Wu J, Luo Q, Tao F, Gu Y, et al. A novel benzo [d] imidazole derivate prevents the development of dextran sulfate sodium-induced murine experimental colitis via inhibition of NLRP3 inflammasome. Biochem Pharmacol. 2013;85(10):1504–12.

    Article  CAS  PubMed  Google Scholar 

  84. Juliana C, Fernandes-Alnemri T, Wu J, Datta P, Solorzano L, Yu J-W, et al. Anti-inflammatory compounds parthenolide and Bay 11–7082 are direct inhibitors of the inflammasome. J Biol Chem. 2010;285(13):9792–802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Rudolphi K, Gerwin N, Verzijl NVD, van der Kraan PVD, Van Den Berg W. Pralnacasan, an inhibitor of interleukin-1β converting enzyme, reduces joint damage in two murine models of osteoarthritis. Osteoarthr Cartil. 2003;11(10):738–46.

    Article  CAS  Google Scholar 

  86. Wannamaker W, Davies R, Namchuk M, Pollard J, Ford P, Ku G, et al. (S)-1-((S)-2-{[1-(4-amino-3-chloro-phenyl)-methanoyl]-amino}-3, 3-dimethyl-butanoyl)-pyrrolidine-2-carboxylic acid ((2R, 3S)-2-ethoxy-5-oxo-tetrahydro-furan-3-yl)-amide (VX-765), an orally available selective interleukin (IL)-converting enzyme/caspase-1 inhibitor, exhibits potent anti-inflammatory activities by inhibiting the release of IL-1β and IL-18. J Pharmacol Exp Ther. 2007;321(2):509–16.

    Article  CAS  PubMed  Google Scholar 

  87. Krishnan N, Bencze G, Cohen P, Tonks NK. The anti-inflammatory compound BAY-11-7082 is a potent inhibitor of protein tyrosine phosphatases. FEBS J. 2013;280(12):2830–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Coll RC, Hill JR, Day CJ, Zamoshnikova A, Boucher D, Massey NL, et al. MCC950 directly targets the NLRP3 ATP-hydrolysis motif for inflammasome inhibition. Nat Chem Biol. 2019;15(6):556–9.

    Article  CAS  PubMed  Google Scholar 

  89. He Y, Varadarajan S, Muñoz-Planillo R, Burberry A, Nakamura Y, Núñez G. 3, 4-methylenedioxy-β-nitrostyrene inhibits NLRP3 inflammasome activation by blocking assembly of the inflammasome. J Biol Chem. 2014;289(2):1142–50.

    Article  CAS  PubMed  Google Scholar 

  90. Huang Y, Jiang H, Chen Y, Wang X, Yang Y, Tao J, et al. Tranilast directly targets NLRP 3 to treat inflammasome-driven diseases. EMBO Mol Med. 2018;10(4):e8689.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Jiang H, He H, Chen Y, Huang W, Cheng J, Ye J, et al. Identification of a selective and direct NLRP3 inhibitor to treat inflammatory disorders. J Exp Med. 2017;214(11):3219–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Marchetti C, Swartzwelter B, Gamboni F, Neff CP, Richter K, Azam T, et al. OLT1177, a β-sulfonyl nitrile compound, safe in humans, inhibits the NLRP3 inflammasome and reverses the metabolic cost of inflammation. Proc Natl Acad Sci. 2018;115(7):E1530–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. He H, Jiang H, Chen Y, Ye J, Wang A, Wang C, et al. Oridonin is a covalent NLRP3 inhibitor with strong anti-inflammasome activity. Nat Commun. 2018;9(1):1–12.

    Article  CAS  Google Scholar 

  94. Yin Q, Sester DP, Tian Y, Hsiao Y-S, Lu A, Cridland JA, et al. Molecular mechanism for p202-mediated specific inhibition of AIM2 inflammasome activation. Cell Rep. 2013;4(2):327–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors received no financial support for the research, authorship, and/or publication of this article.

Author information

Authors and Affiliations

Authors

Contributions

CL and HS contributed to the idea design, literature search, and writing the manuscript. XH contributed to designing the figures.

Corresponding author

Correspondence to Hongling Su.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

It is not applicable.

Informed consent

It is not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Huang, X. & Su, H. The role of the inflammasome and its related pathways in ovarian cancer. Clin Transl Oncol 24, 1470–1477 (2022). https://doi.org/10.1007/s12094-022-02805-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-022-02805-y

Keywords

Navigation