Skip to main content
Log in

High-grade serous ovarian carcinoma, the “Achiles’ hill” for clinicians and molecular biologists: a molecular insight

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

High-grade serous ovarian carcinoma (HGSOC), the deadliest ovarian cancer, alone accounts for 90% of all its subtypes. Characterized by hallmark mutation of TP53, HGSOC show diverse molecular etiology. HGSOC can arise from both ovarian epithelium as well as the fimbrial epithelium of the fallopian tube. Ovulation induced reactive oxygen species, follicular fluid associated growth factor induced stemness, deregulation of hormone receptors like ER, FSHR, AR and hormones like FSH, LH, prolonged ovulation cycle, use of oral contraceptives are agonists of HGSOC while parity, breastfeeding provide protective effect from HGSOC development. Apart from a generic TP53 mutation, mutation of BRCA1/2, RAD51, BRIP1, PALB2, CHEK2, RAD50 etc., were reportedly associated with development of HGSOC. Epigenetic events like methylation of RASSF1A of RAS signaling pathway,OR51L1, OR51I1, OR51F1 etc. has been reported in HGSOC. Micro-RNAs like miR-1290, miR 27-a-3p miR23a, miR205 were reportedly upregulated in HGSOC. Amongst its cognate subtypes viz. differentiated, immunoreactive, mesenchymal, and proliferative, mesenchymal, and proliferative show worst prognosis. A system biology approach showed five major altered pathways in HGSOC, namely, RB, PI3K/RAS, NOTCH, HRR and FOXM1 signaling. For chemonaive patients, drugs that helps in efflux of reduced glutathione or prevent the redox coupling of GSH-GSSG, like Cisplatin, could be considered as the best therapeutic choice for HGSOC. For patients with BRCA1/2 mutations, PARP inhibitors alone or with Bevacizumab can be effective. Immune checkpoint inhibitors could be effective against immunoreactive subtypes. Identification of genes deregulated in chemoresistance could provide better insights in dealing with the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kurman RJ, Shih IeM (2016) The dualistic model of ovarian carcinogenesis: revisited, revised, and expanded. Am J Pathol 186(4):733–747. https://doi.org/10.1016/j.ajpath.2015.11.011

    Article  PubMed  PubMed Central  Google Scholar 

  2. Gadducci A, Guarneri V, Peccatori FA et al (2019) Current strategies for the targeted treatment of high-grade serous epithelial ovarian cancer and relevance of BRCA mutational status. J Ovarian Res 12:9. https://doi.org/10.1186/s13048-019-0484-6

    Article  PubMed  PubMed Central  Google Scholar 

  3. So WK, Cheng JC, Poon SL, Leung PC (2008) Gonadotropin-releasing hormone and ovarian cancer: a functional and mechanistic overview. FEBS J 275:5496–5511. https://doi.org/10.1111/j.1742-4658.2008.06679.x

    Article  CAS  PubMed  Google Scholar 

  4. Bhartiya D, Singh J (2015) FSH-FSHR3-stem cells in ovary surface epithelium: basis for adult ovarian biology, failure, aging, and cancer. Reproduction 149:R35–R48. https://doi.org/10.1530/REP-14-0220

    Article  CAS  PubMed  Google Scholar 

  5. Bose CK, Menon U, Thomas JM, Dawnay AB, Jacobs IJ (2001) Gonadotrophin levels in postmenopausal women with epithelial ovarian cancer. J Obstet Gynaecol India 51:147–149

    CAS  Google Scholar 

  6. Menon U, Riley SC, Thomas J, Bose C et al (2000) Serum inhibin, activin and follistatin in postmenopausal women with epithelial ovarian carcinoma. BJOG: Int J Obstet Gynaecol 107:1069–1074. https://doi.org/10.1111/j.1471-0528.2000.tb11102.x

    Article  CAS  Google Scholar 

  7. Bose CK (2005) Role of nerve growth factor and FSH receptor in epithelial ovarian cancer. Reprod Biomed Online 11:194–197

    Article  CAS  PubMed  Google Scholar 

  8. Zheng W, Magid MS, Kramer EE, Chen YT (1996) Follicle-stimulating hormone receptor is expressed in human ovarian surface epithelium and fallopian tube. Am J Pathol 148:47–53

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Lisio MA, Fu L, Goyeneche A, Gao ZH, Telleria C (2019) High-grade serous ovarian cancer: basic sciences, clinical and therapeutic standpoints. Int J Mol Sci 20:952. https://doi.org/10.3390/ijms20040952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mei J, Tian H, Huang HS, Hsu CF (2021) Cellular models of development of ovarian high-grade serous carcinoma: a review of cell of origin and mechanisms of carcinogenesis. Cell Prolif 54:e13029. https://doi.org/10.1111/cpr.13029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Punzón-Jiménez P, Lago V, Domingo S, Simón C, Mas A (2022) Molecular management of high-grade serous ovarian carcinoma. Int J Mol Sci 23:13777. https://doi.org/10.3390/ijms232213777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Høgdall EV, Christensen L, Kjaer SK, Blaakaer J et al (2003) Distribution of HER-2 overexpression in ovarian carcinoma tissue and its prognostic value in patients with ovarian carcinoma: from the danish MALOVA ovarian cancer study. Cancer 98:66–73. https://doi.org/10.1002/cncr.11476

    Article  CAS  PubMed  Google Scholar 

  13. Ghosh A, Roychowdhury T, Nandi R et al (2021) Inhibitory role of a smart nano-trifattyglyceride of Moringa oleifera root in epithelial ovarian cancer, through attenuation of FSHR-c-Myc axis. J Tradit Complement Med 11:481–492. https://doi.org/10.1016/j.jtcme.2021.03.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Binju M, Padilla MA, Singomat T, Kaur P et al (2019) Mechanisms underlying acquired platinum resistance in high grade serous ovarian cancer—a mini review. Biochim Biophys Acta Gen Subj 1863:371–378. https://doi.org/10.1016/j.bbagen.2018.11.005

    Article  CAS  PubMed  Google Scholar 

  15. Reyes HD, Devor EJ, Warrier A et al (2019) Differential DNA methylation in high-grade serous ovarian cancer (HGSOC) is associated with tumor behavior. Sci Rep 9:17996. https://doi.org/10.1038/s41598-019-54401-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kondrashova O, Topp M, Nesic K, Lieschke E et al (2018) Methylation of all BRCA1 copies predicts response to the PARP inhibitor rucaparib in ovarian carcinoma. Nat Commun 9:3970. https://doi.org/10.1038/s41467-018-05564-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cardenas H, Fang F, Jiang G, Perkins SM et al (2020) Methylomic signatures of high grade serous ovarian cancer. Epigenetics. https://doi.org/10.1080/15592294.2020.1853402

    Article  PubMed  PubMed Central  Google Scholar 

  18. Chan DW, Lam WY, Chen F, Yung MMH et al (2021) Genome-wide DNA methylome analysis identifies methylation signatures associated with survival and drug resistance of ovarian cancers. Clin Epigenetics 13:142. https://doi.org/10.1186/s13148-021-01130-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Matthews BG, Bowden NA, Wong-Brown MW (2021) Epigenetic mechanisms and therapeutic targets in chemoresistant high-grade serous ovarian cancer. Cancers 13:5993. https://doi.org/10.3390/cancers13235993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Geistlinger L, Oh S, Ramos M, Schiffer L et al (2020) Multiomic analysis of subtype evolution and heterogeneity in high-grade serous ovarian carcinoma. Cancer Res 80:4335–4345. https://doi.org/10.1158/0008-5472.CAN-20-0521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lawrenson K, Fonseca MAS, Liu AY, Segato Dezem F et al (2019) A study of high-grade serous ovarian cancer origins implicates the SOX18 transcription factor in tumor development. Cell Rep 29:3726-3735. https://doi.org/10.1016/j.celrep.2019.10.122

    Article  CAS  PubMed  Google Scholar 

  22. Khashaba M, Fawzy M, Abdel-Aziz A et al (2022) Subtyping of high grade serous ovarian carcinoma: histopathological and immunohistochemical approach. J Egypt Natl Canc Inst 34:6. https://doi.org/10.1186/s43046-022-00104-9

    Article  PubMed  PubMed Central  Google Scholar 

  23. Tan TZ, Miow QH, Huang RY, Wong MK et al (2013) Functional genomics identifies five distinct molecular subtypes with clinical relevance and pathways for growth control in epithelial ovarian cancer. EMBO Mol Med 5:1051–1066. https://doi.org/10.1002/emmm.201201823

    Article  CAS  PubMed  Google Scholar 

  24. Mota A, Oltra S, Moreno-Bueno S G (2020) Insight updating of the molecular hallmarks in ovarian carcinoma. EJC Suppl 15:16–26. https://doi.org/10.1016/j.ejcsup.2019.11.001

    Article  PubMed  PubMed Central  Google Scholar 

  25. Macintyre G, Goranova TE, De Silva D et al (2018) Copy number signatures and mutational processes in ovarian carcinoma. Nat Genet 50:1262–1270. https://doi.org/10.1038/s41588-018-0179-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Criscuolo D, Avolio R, Parri M, Romano S, Chiarugi P, Matassa DS, Esposito F (2022) Decreased levels of GSH are associated with platinum resistance in high-grade serous ovarian cancer. Antioxid 11:1544. https://doi.org/10.3390/antiox11081544

    Article  CAS  Google Scholar 

  27. Rinne N, Christie EL, Ardasheva A, Kwok CH et al (2021) Targeting the PI3K/AKT/mTOR pathway in epithelial ovarian cancer, therapeutic treatment options for platinum-resistant ovarian cancer. Cancer Drug Resist 4:573–595. https://doi.org/10.20517/cdr.2021.05

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wu Y, Xia L, Guo Q, Zhu J, Deng Y, Wu X (2020) Identification of chemoresistance-associated key genes and pathways in high-grade serous ovarian cancer by bioinformatics analyses. Cancer Manag Res 12:5213–5223. https://doi.org/10.2147/CMAR.S251622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chiu WT, Huang YF, Tsai HY, Chen CC et al (2015) FOXM1 confers to epithelial-mesenchymal transition, stemness and chemoresistance in epithelial ovarian carcinoma cells. Oncotarget 6:2349–2365. https://doi.org/10.18632/oncotarget.2957

    Article  PubMed  Google Scholar 

  30. Fang CH, Lin YT, Liang CM, Liang SM (2020) A novel c-Kit/phospho-prohibitin axis enhances ovarian cancer stemness and chemoresistance via Notch3-PBX1 and β-catenin-ABCG2 signaling. J Biomed Sci 27:42. https://doi.org/10.1186/s12929-020-00638-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chau WK, Ip CK, Mak AS, Lai HC, Wong AS (2013) c-Kit mediates chemoresistance and tumor-initiating capacity of ovarian cancer cells through activation of Wnt/β-catenin-ATP-binding cassette G2 signaling. Oncogene 32:2767–2781. https://doi.org/10.1038/onc.2012.290

    Article  CAS  PubMed  Google Scholar 

  32. Sterzyńska K, Klejewski A, Wojtowicz K, Świerczewska M et al (2018) The role of matrix gla protein (MGP) expression in paclitaxel and topotecan resistant ovarian cancer cell lines. Int J Mol Sci 19:2901. https://doi.org/10.3390/ijms19102901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Romagnoli A, Maracci C, D’Agostino M, Teana A, Marino DD (2021) Targeting mTOR and eIF4E: a feasible scenario in ovarian cancer therapy. Cancer Drug Resist 4:596–606. https://doi.org/10.20517/cdr.2021.20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chesnokov MS, Khan I, Park Y, Ezell J et al (2021) The MEK1/2 pathway as a therapeutic target in high-grade serous ovarian carcinoma. Cancers 13:1369. https://doi.org/10.3390/cancers13061369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dinić J, Ríos-Luci C, Karpaviciene I, Cikotiene I et al (2020) CKT0353, a novel microtubule targeting agent, overcomes paclitaxel induced resistance in cancer cells. Invest New Drugs 38:584–598. https://doi.org/10.1007/s10637-019-00803-6

    Article  PubMed  Google Scholar 

  36. Shen L, Sun B, Sheng J, Yu S et al (2018) PGC1α promotes cisplatin resistance in human ovarian carcinoma cells through upregulation of mitochondrial biogenesis. Int J Oncol 53:404–416. https://doi.org/10.3892/ijo.2018.4401

    Article  CAS  PubMed  Google Scholar 

  37. Peracchio C, Alabiso O, Valente G, Isidoro C (2012) Involvement of autophagy in ovarian cancer: a working hypothesis. J Ovarian Res 5:22. https://doi.org/10.1186/1757-2215-5-22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhao B, Dierichs L, Gu JN, Trajkovic-Arsic M et al (2020) TFEB-mediated lysosomal biogenesis and lysosomal drug sequestration confer resistance to MEK inhibition in pancreatic cancer. Cell Death Discov 6:12. https://doi.org/10.1038/s41420-020-0246-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Manousakidi S, Guillaume A, Pirou C, Bouleau S et al (2018) FGF1 induces resistance to chemotherapy in ovarian granulosa tumor cells through regulation of p53 mitochondrial localization. Oncogenesis 7:18. https://doi.org/10.1038/s41389-018-0033-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lau MT, So WK, Leung PCK (2013) Correction: fibroblast growth factor 2 induces E-cadherin down-regulation via PI3K/Akt/mTOR and MAPK/ERK signaling in ovarian cancer cells. PLoS ONE. https://doi.org/10.1371/journal.pone.0059083

    Article  PubMed  PubMed Central  Google Scholar 

  41. Ostroumov D, Fekete-Drimusz N, Saborowski M et al (2018) CD4 and CD8 T lymphocyte interplay in controlling tumor growth. Cell Mol Life Sci 75:689–713. https://doi.org/10.1007/s00018-017-2686-7

    Article  CAS  PubMed  Google Scholar 

  42. Duan Z, Luo Y (2021) Targeting macrophages in cancer immunotherapy. Sig Transduct Target Ther 6:127. https://doi.org/10.1038/s41392-021-00506-6

    Article  CAS  Google Scholar 

  43. DeNardo DG, Ruffell B (2019) Macrophages as regulators of tumour immunity and immunotherapy. Nat Rev Immunol 19:369–382. https://doi.org/10.1038/s41577-019-0127-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kargl J, Zhu X, Zhang H, Yang GHY et al (2019) Neutrophil content predicts lymphocyte depletion and anti-PD1 treatment failure in NSCLC. JCI Insight 4:e130850. https://doi.org/10.1172/jci.insight.130850

    Article  PubMed  PubMed Central  Google Scholar 

  45. González-Navajas JM, Fan DD, Yang S, Yang FM et al (2021) The impact of tregs on the anticancer immunity and the efficacy of immune checkpoint inhibitor therapies. Front Immunol 12:625783. https://doi.org/10.3389/fimmu.2021.625783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bi J, Tian Z (1999) NK cell dysfunction and checkpoint immunotherapy. Front Immunol 10:1999. https://doi.org/10.3389/fimmu.2019.01999

    Article  CAS  Google Scholar 

  47. Haanen JB, Cerundolo V (2018) NKG2A, a new kid on the immune checkpoint block. Cell 175:1720–1722. https://doi.org/10.1016/j.cell.2018

    Article  CAS  PubMed  Google Scholar 

  48. Xie G, Cheng T, Lin J, Zhang L et al (2018) Local angiotensin II contributes to tumor resistance to checkpoint immunotherapy. J Immunother Cancer 6:88. https://doi.org/10.1186/s40425-018-0401-3

    Article  PubMed  PubMed Central  Google Scholar 

  49. Tao J, Sun D, Zhou H, Zhu J et al (2022) Next-generation sequencing identifies potential novel therapeutic targets in chinese HGSOC patients. Pathol Res Pract 238:154074. https://doi.org/10.1016/j.prp.2022.154074

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rittwika Bhattacharya.

Ethics declarations

Conflict of interest

Authors declare that there is no potential conflict of interest.

Ethical approval

The manuscript complies with the Ethical Rules applicable for this journal.

Research involving human and animal participants

This article does not contain any studies with animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattacharya, R., Ghosh, A. & Mukhopadhyay, S. High-grade serous ovarian carcinoma, the “Achiles’ hill” for clinicians and molecular biologists: a molecular insight. Mol Biol Rep 50, 9511–9519 (2023). https://doi.org/10.1007/s11033-023-08760-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-023-08760-3

Keywords

Navigation