Skip to main content

Advertisement

Log in

Inhibitory effect of polyphenols (phenolic acids, lignans, and stilbenes) on cancer by regulating signal transduction pathways: a review

  • Review Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Natural products, especially polyphenols (phenolic acids, lignans, and stilbenes) are suggested to be more potent anticancer drugs because of their no or less adverse effects, excess availability, high accuracy, and secure mode of action. In the present review, potential anticancer mechanisms of action of some polyphenols including phenolic acids, lignans, and stilbenes are discussed based on clinical, epidemiological, in vivo, and in vitro studies. The emerging evidence revealed that phenolic acids, lignans, and stilbenes induced apoptosis in the treatment of breast (MCF-7), colon (Caco-2), lung (SKLU-1), prostate (DU-145 and LNCaP), hepatocellular (hepG-2), and cervical (A-431) cancer cells, cell cycle arrest (S/G2/M/G1-phases) in gastric (MKN-45 and MKN-74), colorectal (HCT-116), bladder (T-24 and 5637), oral (H-400), leukemic (HL-60 and MOLT-4) and colon (Caco-2) cancer cells, and inhibit cell proliferation against the prostate (PC-3), liver (LI-90), breast (T47D and MDA-MB-231), colon (HT-29 and Caco-2), cervical (HTB-35), and MIC-1 cancer cells through caspase-3, MAPK, AMPK, Akt, NF-κB, Wnt, CD95, and SIRT1 pathways. Based on accumulated data, we suggested that polyphenols could be considered as a viable therapeutic option in the treatment of cancer cells in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

taken from WHO [1]

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Not applicable.

References

  1. WHO, World Health organization. Available at: https://www.who.int/news-room/fact-sheets/detail/cancer. [Accessed on 9 July, 2020]. 2019.

  2. Collaborators GRF. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks in 188 countries, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2015;386(10010):2287.

    Google Scholar 

  3. Plummer M, et al. Global burden of cancers attributable to infections in 2012: a synthetic analysis. Lancet Glob Health. 2016;4(9):e609–16.

    PubMed  Google Scholar 

  4. Moein S, et al. Antioxidant properties and protective effect on cell cytotoxicity of salvia mirzayani. Pharm Biol. 2007;45(6):458–63.

    Google Scholar 

  5. Moein S. Polyphenols and cancer: a review. Mol Med J. 2015;1(1):6–12.

    Google Scholar 

  6. Cragg GM, Newman DJ. Plants as a source of anti-cancer agents. J Ethnopharmacol. 2005;100(1–2):72–9.

    CAS  PubMed  Google Scholar 

  7. Seca AM, Pinto DC. Plant secondary metabolites as anticancer agents: successes in clinical trials and therapeutic application. Int J Mol Sci. 2018;19(1):263.

    PubMed Central  Google Scholar 

  8. Rayan A, Raiyn J, Falah M. Nature is the best source of anticancer drugs: Indexing natural products for their anticancer bioactivity. PLoS ONE. 2017;12(11):e0187925.

    PubMed  PubMed Central  Google Scholar 

  9. Manach C, et al. Polyphenols: food sources and bioavailability. Am J Clin Nutr. 2004;79(5):727–47.

    CAS  PubMed  Google Scholar 

  10. Hazafa A, et al. The role of polyphenol (Flavonoids) compounds in the treatment of cancer cells. Nutr Cancer. 2020;72(3):386–97.

    CAS  PubMed  Google Scholar 

  11. Zamora-Ros R, et al. Association between habitual dietary flavonoid and lignan intake and colorectal cancer in a Spanish case–control study (the Bellvitge Colorectal Cancer Study). Cancer Causes Control. 2013;24(3):549–57.

    PubMed  Google Scholar 

  12. Xie Q, et al. Isoflavone consumption and risk of breast cancer: a dose-response meta-analysis of observational studies. Asia Pac J Clin Nutr. 2013;22(1):118.

    CAS  PubMed  Google Scholar 

  13. Chen M, et al. Association between soy isoflavone intake and breast cancer risk for pre-and post-menopausal women: a meta-analysis of epidemiological studies. PLoS ONE. 2014;9(2):e89288.

    PubMed  PubMed Central  Google Scholar 

  14. McCann SE, et al. Dietary lignan intakes in relation to survival among women with breast cancer: the Western New York Exposures and Breast Cancer (WEB) Study. Breast Cancer Res Treat. 2010;122(1):229–35.

    CAS  PubMed  Google Scholar 

  15. Scalbert A, Johnson IT, Saltmarsh M. Polyphenols: antioxidants and beyond. Am J Clin Nutr. 2005;81(1):215S-217S.

    CAS  PubMed  Google Scholar 

  16. Fantini M, et al. In vitro and in vivo antitumoral effects of combinations of polyphenols, or polyphenols and anticancer drugs: perspectives on cancer treatment. Int J Mol Sci. 2015;16(5):9236–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Niedzwiecki A, et al. Anticancer efficacy of polyphenols and their combinations. Nutrients. 2016;8(9):552.

    PubMed Central  Google Scholar 

  18. Ann Beltz L, et al. Mechanisms of cancer prevention by green and black tea polyphenols. Anticancer Agents Med Chem. 2006;6(5):389–406.

    Google Scholar 

  19. Fiuza S, et al. Phenolic acid derivatives with potential anticancer properties––a structure–activity relationship study. Part 1: Methyl, propyl and octyl esters of caffeic and gallic acids. Bioorgan Med Chem. 2004;12(13):3581–9.

    CAS  Google Scholar 

  20. Farah A, Donangelo CM. Phenolic compounds in coffee. Braz J Plant Physiol. 2006;18(1):23–36.

    CAS  Google Scholar 

  21. Spilioti E, et al. Phenolic acid composition, antiatherogenic and anticancer potential of honeys derived from various regions in Greece. PLoS ONE. 2014;9(4):e94860.

    PubMed  PubMed Central  Google Scholar 

  22. Ho M-L, et al. Peonidin 3-glucoside inhibits lung cancer metastasis by downregulation of proteinases activities and MAPK pathway. Nutr Cancer. 2010;62(4):505–16.

    CAS  PubMed  Google Scholar 

  23. Subramanian AP, et al. Gallic acid induced apoptotic events in HCT-15 colon cancer cells. World J Gastroenterol. 2016;22(15):3952.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Fabiani R, et al. The production of hydrogen peroxide is not a common mechanism by which olive oil phenols induce apoptosis on HL60 cells. Food Chem. 2011;125(4):1249–55.

    CAS  Google Scholar 

  25. Russell LH, et al. Autoxidation of gallic acid induces ROS-dependent death in human prostate cancer LNCaP cells. Anticancer Res. 2012;32(5):1595–602.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu K-C, et al. Gallic acid suppresses the migration and invasion of PC-3 human prostate cancer cells via inhibition of matrix metalloproteinase-2 and-9 signaling pathways. Oncol Rep. 2011;26(1):177–84.

    PubMed  Google Scholar 

  27. Zhao B, Hu M. Gallic acid reduces cell viability, proliferation, invasion and angiogenesis in human cervical cancer cells. Oncol Lett. 2013;6(6):1749–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Forester SC, et al. The anthocyanin metabolites gallic acid, 3-O-methylgallic acid, and 2, 4, 6-trihydroxybenzaldehyde decrease human colon cancer cell viability by regulating pro-oncogenic signals. Mol Carcinog. 2014;53(6):432–9.

    CAS  PubMed  Google Scholar 

  29. Coman V, Vodnar DC. Hydroxycinnamic acids and human health: recent advances. J Sci Food Agric. 2020;100(2):483–99.

    CAS  PubMed  Google Scholar 

  30. Lin VC-H, et al. Activation of AMPK by pterostilbene suppresses lipogenesis and cell-cycle progression in p53 positive and negative human prostate cancer cells. J Agric Food Chem. 2012;60(25):6399–407.

    CAS  PubMed  Google Scholar 

  31. Prasad NR, et al. Inhibitory effect of caffeic acid on cancer cell proliferation by oxidative mechanism in human HT-1080 fibrosarcoma cell line. Mol Cell Biochem. 2011;349(1–2):11–9.

    Google Scholar 

  32. Ribera-Fonseca A, et al. The anti-proliferative and anti-invasive effect of leaf extracts of blueberry plants treated with methyl jasmonate on human gastric cancer in vitro is related to their antioxidant properties. Antioxidants. 2020;9(1):45.

    CAS  PubMed Central  Google Scholar 

  33. Shigeoka Y, et al. Sulindac sulfide and caffeic acid phenethyl ester suppress the motility of lung adenocarcinoma cells promoted by transforming growth factor-β through Akt inhibition. J Cancer Res Clin Oncol. 2004;130(3):146–52.

    CAS  PubMed  Google Scholar 

  34. McEleny K, et al. Caffeic acid phenethyl ester-induced PC-3 cell apoptosis is caspase-dependent and mediated through the loss of inhibitors of apoptosis proteins. BJU Int. 2004;94(3):402–6.

    CAS  PubMed  Google Scholar 

  35. Ozturk G, et al. The anticancer mechanism of caffeic acid phenethyl ester (CAPE): review of melanomas, lung and prostate cancers. Eur Rev Med Pharmacol Sci. 2012;16(15):2064–8.

    CAS  PubMed  Google Scholar 

  36. Kudugunti SK, et al. Efficacy of caffeic acid phenethyl ester (CAPE) in skin B16–F0 melanoma tumor bearing C57BL/6 mice. Invest New Drugs. 2011;29(1):52–62.

    CAS  PubMed  Google Scholar 

  37. Beejmohun V, et al. Microwave-assisted extraction of the main phenolic compounds in flaxseed. Phytochem Anal. 2007;18(4):275–82.

    CAS  PubMed  Google Scholar 

  38. Mota FL, et al. Aqueous solubility of some natural phenolic compounds. Ind Eng Chem Res. 2008;47(15):5182–9.

    CAS  Google Scholar 

  39. Karthikeyan S, et al. Radiosensitizing effect of ferulic acid on human cervical carcinoma cells in vitro. Toxicol In Vitro. 2011;25(7):1366–75.

    CAS  PubMed  Google Scholar 

  40. Eroğlu C, et al. Assessment of the anticancer mechanism of ferulic acid via cell cycle and apoptotic pathways in human prostate cancer cell lines. Tumor Biology. 2015;36(12):9437–46.

    PubMed  Google Scholar 

  41. Milder IE, et al. Lignan contents of Dutch plant foods: a database including lariciresinol, pinoresinol, secoisolariciresinol and matairesinol. Br J Nutr. 2005;93(3):393–402.

    CAS  PubMed  Google Scholar 

  42. Webb AL, McCullough ML. Dietary lignans: potential role in cancer prevention. Nutrition cancer. 2005;51(2):117–31.

    CAS  PubMed  Google Scholar 

  43. Linseisen J, et al. Dietary phytoestrogen intake and premenopausal breast cancer risk in a German case-control study. Int J Cancer. 2004;110(2):284–90.

    CAS  PubMed  Google Scholar 

  44. Lee C-C, et al. Sesamin inhibits macrophage-induced vascular endothelial growth factor and matrix metalloproteinase-9 expression and proangiogenic activity in breast cancer cells. Inflammation. 2011;34(3):209–21.

    CAS  PubMed  Google Scholar 

  45. Deng P, et al. Sesamin induces cell cycle arrest and apoptosis through the inhibition of signal transducer and activator of transcription 3 signalling in human hepatocellular carcinoma cell line HepG2. Biol Pharmac Bull. 2013;36(10):1540–8.

    CAS  Google Scholar 

  46. Xu P, et al. Sesamin inhibits lipopolysaccharide-induced proliferation and invasion through the p38-MAPK and NF-κB signaling pathways in prostate cancer cells. Oncol Rep. 2015;33(6):3117–23.

    CAS  PubMed  Google Scholar 

  47. Fang C-Y, et al. Honokiol, a lignan biphenol derived from the magnolia tree, inhibits dengue virus type 2 infection. Viruses. 2015;7(9):4894–910.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Hosokawa Y, et al. Honokiol and magnolol inhibit CXCL10 and CXCL11 production in IL-27-stimulated human oral epithelial cells. Inflammation. 2018;41(6):2110–5.

    CAS  PubMed  Google Scholar 

  49. Guillermo-Lagae, R., et al., Antineoplastic effects of honokiol on melanoma. BioMed research international, 2017. 2017.

  50. Shen L, et al. Honokiol inhibits bladder cancer cell invasion through repressing SRC-3 expression and epithelial-mesenchymal transition. Oncol Lett. 2017;14(4):4294–300.

    PubMed  PubMed Central  Google Scholar 

  51. Park CH, et al. Novel c-Met inhibitor suppresses the growth of c-Met-addicted gastric cancer cells. BMC Cancer. 2016;16(1):1–9.

    CAS  Google Scholar 

  52. Rajendran P, et al. Honokiol inhibits signal transducer and activator of transcription-3 signaling, proliferation, and survival of hepatocellular carcinoma cells via the protein tyrosine phosphatase SHP-1. J Cell Physiol. 2012;227(5):2184–95.

    CAS  PubMed  Google Scholar 

  53. Rauf A, et al. Honokiol: an anticancer lignan. Biomed Pharmacother. 2018;107:555–62.

    CAS  PubMed  Google Scholar 

  54. Siriwarin B, Weerapreeyakul N. Sesamol induced apoptotic effect in lung adenocarcinoma cells through both intrinsic and extrinsic pathways. Chem Biol Interact. 2016;254:109–16.

    CAS  PubMed  Google Scholar 

  55. Majdalawieh AF, Mansour ZR. Sesamol, a major lignan in sesame seeds (Sesamum indicum): anti-cancer properties and mechanisms of action. Eur J Pharmacol. 2019;855:75–89.

    CAS  PubMed  Google Scholar 

  56. Yashaswini P, Rao AA, Singh SA. Inhibition of lipoxygenase by sesamol corroborates its potential anti-inflammatory activity. Int J Biol Macromol. 2017;94:781–7.

    CAS  PubMed  Google Scholar 

  57. Khamphio M, Barusrux S, Weerapreeyakul N. Sesamol induces mitochondrial apoptosis pathway in HCT116 human colon cancer cells via pro-oxidant effect. Life Sci. 2016;158:46–56.

    CAS  PubMed  Google Scholar 

  58. Jacklin A, et al. The sesame seed oil constituent, sesamol, induces growth arrest and apoptosis of cancer and cardiovascular cells. Ann N Y Acad Sci. 2003;1010(1):374–80.

    CAS  PubMed  Google Scholar 

  59. Anekonda TS. Resveratrol—a boon for treating Alzheimer’s disease? Brain Res Rev. 2006;52(2):316–26.

    CAS  PubMed  Google Scholar 

  60. King RE, Bomser JA, Min DB. Bioactivity of resveratrol. Compr Rev Food Sci Food Saf. 2006;5(3):65–70.

    CAS  Google Scholar 

  61. Lee E-J, et al. G2/M cell cycle arrest and induction of apoptosis by a stilbenoid, 3, 4, 5-trimethoxy-4′-bromo-cis-stilbene, in human lung cancer cells. Life Sci. 2004;75(23):2829–39.

    CAS  PubMed  Google Scholar 

  62. Kraft TE, et al. Fighting cancer with red wine? Molecular mechanisms of resveratrol. Crit Rev Food Sci Nutr. 2009;49(9):782–99.

    CAS  PubMed  Google Scholar 

  63. Athar M, et al. Resveratrol: a review of preclinical studies for human cancer prevention. Toxicol Appl Pharmacol. 2007;224(3):274–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Yang Z, et al. Nitric oxide initiates progression of human melanoma via a feedback loop mediated by apurinic/apyrimidinic endonuclease-1/redox factor-1, which is inhibited by resveratrol. Mol Cancer Ther. 2008;7(12):3751–60.

    CAS  PubMed  Google Scholar 

  65. Yang Q, et al. Resveratrol inhibits the growth of gastric cancer by inducing G1 phase arrest and senescence in a Sirt1-dependent manner. PLoS ONE. 2013;8(11):e70627.

    PubMed  PubMed Central  Google Scholar 

  66. Golkar L, et al. Resveratrol inhibits pancreatic cancer cell proliferation through transcriptional induction of macrophage inhibitory cytokine-1. J Surg Res. 2007;138(2):163–9.

    CAS  PubMed  Google Scholar 

  67. Ahmad N, et al. Resveratrol causes WAF-1/p21-mediated G1-phase arrest of cell cycle and induction of apoptosis in human epidermoid carcinoma A431 cells. Clin Cancer Res. 2001;7(5):1466–73.

    CAS  PubMed  Google Scholar 

  68. Aluyen JK, et al. Resveratrol: potential as anticancer agent. J Diet Suppl. 2012;9(1):45–56.

    CAS  PubMed  Google Scholar 

  69. Bishayee A, Dhir N. Resveratrol-mediated chemoprevention of diethylnitrosamine-initiated hepatocarcinogenesis: inhibition of cell proliferation and induction of apoptosis. Chem Biol Interact. 2009;179(2–3):131–44.

    CAS  PubMed  Google Scholar 

  70. Scarlatti F, et al. Role of non-canonical Beclin 1-independent autophagy in cell death induced by resveratrol in human breast cancer cells. Cell Death Differ. 2008;15(8):1318–29.

    CAS  PubMed  Google Scholar 

  71. Scalbert A, Williamson G. Dietary intake and bioavailability of polyphenols. J Nutr. 2000;130(8):2073S-2085S.

    CAS  PubMed  Google Scholar 

  72. Kay CD, et al. Anthocyanins and flavanones are more bioavailable than previously perceived: a review of recent evidence. Ann Rev Food Sci Technol. 2017;8:155–80.

    CAS  Google Scholar 

  73. Oliveira H, et al. Experimental and theoretical data on the mechanism by which red wine anthocyanins are transported through a human MKN-28 gastric cell model. J Agric Food Chem. 2015;63(35):7685–92.

    CAS  PubMed  Google Scholar 

  74. Margalef M, et al. Flavanol plasma bioavailability is affected by metabolic syndrome in rats. Food Chem. 2017;231:287–94.

    CAS  PubMed  Google Scholar 

  75. Teng H, Chen L. Polyphenols and bioavailability: an update. Crit Rev Food Sci Nutr. 2019;59(13):2040–51.

    CAS  PubMed  Google Scholar 

  76. Aragones G, et al. The importance of studying cell metabolism when testing the bioactivity of phenolic compounds. Trends Food Sci Technol. 2017;69:230–42.

    CAS  Google Scholar 

  77. Bian Y, et al. Natural polyphenols targeting senescence: A novel prevention and therapy strategy for cancer. Int J Mol Sci. 2020;21(2):684.

    CAS  PubMed Central  Google Scholar 

  78. Song NR, et al. Quercetin suppresses invasion and migration of H-Ras-transformed MCF10A human epithelial cells by inhibiting phosphatidylinositol 3-kinase. Food Chem. 2014;142:66–71.

    CAS  PubMed  Google Scholar 

  79. Bhardwaj A, et al. Resveratrol inhibits proliferation, induces apoptosis, and overcomes chemoresistance through down-regulation of STAT3 and nuclear factor-κB–regulated antiapoptotic and cell survival gene products in human multiple myeloma cells. Blood. 2007;109(6):2293–302.

    CAS  PubMed  Google Scholar 

  80. Basli A, Belkacem N, Amrani I. Health benefits of phenolic compounds against cancers. In: Phenolic compounds–Biological activity. London: IntechOpen; 2017. p. 193–210.

    Google Scholar 

  81. Wu H, et al. The cytotoxicity effect of resveratrol: cell cycle arrest and induced apoptosis of breast cancer 4T1 Cells. Toxins. 2019;11(12):731.

    CAS  PubMed Central  Google Scholar 

  82. Salar RK, Purewal SS, Sandhu KS. Relationships between DNA damage protection activity, total phenolic content, condensed tannin content and antioxidant potential among Indian barley cultivars. Biocatal Agric Biotechnol. 2017;11:201–6.

    Google Scholar 

  83. Alam MN, Almoyad M, Huq F. Polyphenols in colorectal cancer: current state of knowledge including clinical trials and molecular mechanism of action. BioMed Res Int. 2018;2:2.

    Google Scholar 

  84. Kampa M, et al. Polyphenols and cancer cell growth. In: Reviews of physiology, biochemistry and pharmacology. Springer; 2007. p. 79–113.

    Google Scholar 

  85. Thomasset SC, et al. Dietary polyphenolic phytochemicals—promising cancer chemopreventive agents in humans? A review of their clinical properties. Int J Cancer. 2007;120(3):451–8.

    CAS  PubMed  Google Scholar 

  86. Hamilton-Reeves JM, et al. Short-term soy isoflavone intervention in patients with localized prostate cancer: a randomized, double-blind, placebo-controlled trial. PLoS ONE. 2013;8(7):e68331.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Azrad M, et al. Flaxseed-derived enterolactone is inversely associated with tumor cell proliferation in men with localized prostate cancer. J Med Food. 2013;16(4):357–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Miyanaga N, et al. Prostate cancer chemoprevention study: an investigative randomized control study using purified isoflavones in men with rising prostate-specific antigen. Cancer Sci. 2012;103(1):125–30.

    CAS  PubMed  Google Scholar 

  89. Touillaud MS, et al. Dietary lignan intake and postmenopausal breast cancer risk by estrogen and progesterone receptor status. J Natl Cancer Inst. 2007;99(6):475–86.

    CAS  PubMed  Google Scholar 

  90. Gardeazabal I, et al. Total polyphenol intake and breast cancer risk in the Seguimiento Universidad de Navarra (SUN) cohort. Br J Nutr. 2019;122(5):542–51.

    CAS  PubMed  Google Scholar 

  91. Fabian CJ, et al. Reduction in Ki-67 in benign breast tissue of high-risk women with the lignan secoisolariciresinol diglycoside. Cancer Prev Res. 2010;3(10):1342–50.

    CAS  Google Scholar 

  92. He Z-Y, et al. Upregulation of p53 expression in patients with colorectal cancer by administration of curcumin. Cancer Invest. 2011;29(3):208–13.

    CAS  PubMed  Google Scholar 

  93. Gierach GL, et al. Coffee intake and breast cancer risk in the NIH-AARP diet and health study cohort. Int J Cancer. 2012;131(2):452–60.

    CAS  PubMed  Google Scholar 

  94. Gao X, et al. Disparate in vitro and in vivo antileukemic effects of resveratrol, a natural polyphenolic compound found in grapes. J Nutr. 2002;132(7):2076–81.

    CAS  PubMed  Google Scholar 

  95. Wenzel E, et al. Bioactivity and metabolism of trans-resveratrol orally administered to Wistar rats. Mol Nutr Food Res. 2005;49(5):482–94.

    CAS  PubMed  Google Scholar 

  96. Brizuela L, et al. The sphingosine kinase-1 survival pathway is a molecular target for the tumor-suppressive tea and wine polyphenols in prostate cancer. FASEB J. 2010;24(10):3882–94.

    CAS  PubMed  Google Scholar 

  97. Madan E, et al. Regulation of apoptosis by resveratrol through JAK/STAT and mitochondria mediated pathway in human epidermoid carcinoma A431 cells. Biochem Biophys Res Commun. 2008;377(4):1232–7.

    CAS  PubMed  Google Scholar 

  98. Li H, et al. 3, 3′, 4, 5, 5′-pentahydroxy-trans-stilbene, a resveratrol derivative, induces apoptosis in colorectal carcinoma cells via oxidative stress. Eur J Pharmacol. 2010;637(1–3):55–61.

    CAS  PubMed  Google Scholar 

  99. Ide H, et al. Combined inhibitory effects of soy isoflavones and curcumin on the production of prostate-specific antigen. Prostate. 2010;70(10):1127–33.

    CAS  PubMed  Google Scholar 

  100. Buck K, et al. Serum enterolactone and prognosis of postmenopausal breast cancer. J Clin Oncol. 2011;29(28):3730–8.

    CAS  PubMed  Google Scholar 

  101. Flower G, et al. Flax and breast cancer: a systematic review. Integr Cancer Ther. 2014;13(3):181–92.

    PubMed  Google Scholar 

  102. Chen H-S, et al. Ellagic acid induces cell cycle arrest and apoptosis through TGF-β/Smad3 signaling pathway in human breast cancer MCF-7 cells. Int J Oncol. 2015;46(4):1730–8.

    CAS  PubMed  Google Scholar 

  103. Wang Y, et al. Evidence for an association of dietary flavonoid intake with breast cancer risk by estrogen receptor status is limited. J Nutr. 2014;144(10):1603–11.

    CAS  PubMed  Google Scholar 

  104. Wang K, et al. Investigation of gallic acid induced anticancer effect in human breast carcinoma mcf-7 cells. J Biochem Mol Toxicol. 2014;28(9):387–93.

    CAS  PubMed  Google Scholar 

  105. Moon D, et al. Pterostilbene induces mitochondrially derived apoptosis in breast cancer cells in vitro. J Surg Res. 2013;180(2):208–15.

    CAS  PubMed  Google Scholar 

  106. Su C-M, et al. Pterostilbene inhibits triple-negative breast cancer metastasis via inducing microRNA-205 expression and negatively modulates epithelial-to-mesenchymal transition. J Nutr Biochem. 2015;26(6):675–85.

    CAS  PubMed  Google Scholar 

  107. Yong WK, Ho YF, Abd Malek SN. Xanthohumol induces apoptosis and S phase cell cycle arrest in A549 non-small cell lung cancer cells. Pharmacogn Mag. 2015;11(2):275.

    CAS  Google Scholar 

  108. Hong Z, et al. Luteolin is effective in the non-small cell lung cancer model with L 858 R/T 790 M EGF receptor mutation and erlotinib resistance. Br J Pharmacol. 2014;171(11):2842–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Li F, et al. Antiproliferative activities of tea and herbal infusions. Food function. 2013;4(4):530–8.

    CAS  PubMed  Google Scholar 

  110. Pitchakarn P, et al. Ellagic acid inhibits migration and invasion by prostate cancer cell lines. Asian Pac J Cancer Prev. 2013;14(5):2859–63.

    PubMed  Google Scholar 

  111. Ganapathy S, et al. Resveratrol enhances antitumor activity of TRAIL in prostate cancer xenografts through activation of FOXO transcription factor. PLoS ONE. 2010;5(12):e15627.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Selvaraj S, et al. Resveratrol activates autophagic cell death in prostate cancer cells via downregulation of STIM1 and the mTOR pathway. Mol Carcinog. 2016;55(5):818–31.

    CAS  PubMed  Google Scholar 

  113. Kwon GT, et al. Piceatannol inhibits migration and invasion of prostate cancer cells: possible mediation by decreased interleukin-6 signaling. J Nutr Biochem. 2012;23(3):228–38.

    CAS  PubMed  Google Scholar 

  114. Yousef AI, El-Masry OS, Abdel Mohsen MA. Impact of cellular genetic make-up on colorectal cancer cell lines response to ellagic acid: implications of small interfering RNA. Asian Pac J Cancer Prev. 2016;17(2):743–8.

    PubMed  Google Scholar 

  115. Saud SM, et al. Resveratrol prevents tumorigenesis in mouse model of Kras activated sporadic colorectal cancer by suppressing oncogenic Kras expression. Carcinogenesis. 2014;35(12):2778–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Yeh C-B, et al. The antimetastatic effects of resveratrol on hepatocellular carcinoma through the downregulation of a metastasis-associated protease by SP-1 modulation. PLoS ONE. 2013;8(2):e56661.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Zhang H, et al. Piceatannol promotes apoptosis via up-regulation of microRNA-129 expression in colorectal cancer cell lines. Biochem Biophys Res Commun. 2014;452(3):775–81.

    CAS  PubMed  Google Scholar 

  118. García-Zepeda SP, et al. Resveratrol induces cell death in cervical cancer cells through apoptosis and autophagy. Eur J Cancer Prev. 2013;22(6):577–84.

    PubMed  Google Scholar 

  119. Sun G, et al. Gallic acid as a selective anticancer agent that induces apoptosis in SMMC-7721 human hepatocellular carcinoma cells. Oncol Lett. 2016;11(1):150–8.

    CAS  PubMed  Google Scholar 

  120. Srigopalram S, et al. Ellagic acid normalizes mitochondrial outer membrane permeabilization and attenuates inflammation-mediated cell proliferation in experimental liver cancer. Appl Biochem Biotechnol. 2014;173(8):2254–66.

    CAS  PubMed  Google Scholar 

  121. Rajasekaran D, et al. Resveratrol interferes with N-nitrosodiethylamine-induced hepatocellular carcinoma at early and advanced stages in male Wistar rats. Mol Med Rep. 2011;4(6):1211–7.

    CAS  PubMed  Google Scholar 

  122. Ho H-H, et al. Gallic acid inhibits gastric cancer cells metastasis and invasive growth via increased expression of RhoB, downregulation of AKT/small GTPase signals and inhibition of NF-κB activity. Toxicol Appl Pharmacol. 2013;266(1):76–85.

    CAS  PubMed  Google Scholar 

  123. Wang Z, et al. Resveratrol induces gastric cancer cell apoptosis via reactive oxygen species, but independent of sirtuin1. Clin Exp Pharmacol Physiol. 2012;39(3):227–32.

    PubMed  Google Scholar 

  124. Abdal Dayem A, et al. The anti-cancer effect of polyphenols against breast cancer and cancer stem cells: molecular mechanisms. Nutrients. 2016;8(9):581.

    PubMed Central  Google Scholar 

  125. Zhou Y, Zheng J, Li Y, Xu D-P, Li S, Chen Y-M, Li H-B (2016) Natural polyphenols for prevention and treatment of cancer. Nutrients 8(8):515. https://doi.org/10.3390/nu8080515

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

Hereby, we extend our gratitude to A.Q Research Group, Pakistan for reviewing the article and providing helpful comments.

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

AH and MN: Conceived the presented data, writing—original draft, developed the theory, formal analysis, investigation, investigation. MOI, DA and MBKT: investigation, supervision, writing—original draft, software. UJ, AR and SP: writing—editing and revision.

Corresponding author

Correspondence to A. Hazafa.

Ethics declarations

Conflict of interest

The authors declared no conflict of interest.

Ethical approval

This is a review article, no ethical approval is required.

Research involving human participants and/or animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study informed consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hazafa, A., Iqbal, M.O., Javaid, U. et al. Inhibitory effect of polyphenols (phenolic acids, lignans, and stilbenes) on cancer by regulating signal transduction pathways: a review. Clin Transl Oncol 24, 432–445 (2022). https://doi.org/10.1007/s12094-021-02709-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-021-02709-3

Keywords

Navigation