Skip to main content

Advertisement

Log in

PD-1 and PD-L1 gene expressions and their association with Epstein-Barr virus infection in chronic lymphocytic leukemia

  • Research Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Purpose

The  PD-1 (programmed cell death-1) receptor is expressed on the surface of activated T cells. Its ligand, programmed cell death ligand-1 (PD-L1), is expressed on the surface of dendritic cells or macrophages. The PD-1/PD-L1 interaction ensures prevention of autoimmunity by activating the immune system only when needed. In cancers, PD-L1 expressed on the tumour cells binds to PD-1 receptors on the activated T cells, leading to inhibition of the cytotoxic T cells and immunosuppression. PD-1/PD-L1 pathway is upregulated in EBV infection that is known to worsen the CLL prognosis. Therefore, we aimed to study the association between PD-1 and PD-L1 expressions, EBV status and the CLL prognosis.

Methods and patients

The study was conducted on 80 newly diagnosed CLL patients and 80 controls. We analyzed PD-1 and PD-L1 expressions and EBV-DNA load by real-time PCR. The cytogenetic abnormalities and expression of ZAP70 and CD38 were detected by FISH and Flow cytometry, respectively.

Results

PD-1/PD-L1 expressions were significantly upregulated in CLL patients compared to controls. In addition, their mRNA levels were significantly higher in EBV( +) versus EBV( −) patients. High expression of PD-1/PD-L1 was associated with poor prognostic markers (RAI stages of CLL, del 17p13, ZAP70, and CD38 expression), failure of complete remission, shorter progression-free survival, and overall survival.

Conclusion

High expression of PD-1 and PD-L1, together with high EBD-DNA load were linked to worse prognosis in CLL. In addition, PD-1 and PD-L1 might represent suitable therapeutic targets for patients suffering from aggressive CLL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and material

The data that support the findings of this study are available from the corresponding author, [G M], upon request.

References

  1. Grywalska E, Pasiarski M, Sosnowska-Pasiarska B, Macek P, Rolińska A, Samardakiewicz M, et al. Programmed cell death 1 expression and Epstein-Barr virus infection in chronic lymphocytic leukaemia: a prospective cohort study. Cancer Manag Res. 2019;11:7605–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rozman C, Montserrat E. Chronic lymphocytic leukemia. N Engl J Med. 1995;333(16):1052–7. https://doi.org/10.1056/nejm199510193331606.

    Article  CAS  PubMed  Google Scholar 

  3. Ferrajoli A, Ivan C, Ciccone M, Shimizu M, Kita Y, Ohtsuka M, et al. Epstein-Barr Virus microRNAs are expressed in patients with chronic lymphocytic leukemia and correlate with overall survival. EBioMedicine. 2015;2(6):572–82. https://doi.org/10.1016/j.ebiom.2015.04.018.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Jurisic V, Colovic N, Kraguljac N, Atkinson HD, Colovic M. Analysis of CD23 antigen expression in B-chronic lymphocytic leukaemia and its correlation with clinical parameters. Med Oncol. 2008;25(3):315–22.

    Article  PubMed  Google Scholar 

  5. Grzywnowicz M, Karczmarczyk A, Skorka K, Zajac M, Zaleska J, Chocholska S, et al. Expression of programmed death 1 ligand in different compartments of chronic lymphocytic leukemia. Acta Haematol. 2015;134(4):255–62. https://doi.org/10.1159/000430980.

    Article  CAS  PubMed  Google Scholar 

  6. Korkmaz S, Erdem S, Akay E, Taşdemir EA, Karaman H, Keklik M. Do PD-1 and PD-L2 expressions have prognostic impact in hematologic malignancies? Turkish J Med Sci. 2019;49(1):265–71.

    CAS  Google Scholar 

  7. Ahmadpanah SMA, Ghanbari M, Janani SA, Nemati F. Expression of PDCD1 (PD-1) gene among non-small cell lung cancer (NSCLC) patients with real-time PCR application. Asian J Biochem Genet Mol Biol. 2019;2:1–9.

    Google Scholar 

  8. Visco C, Falisi E, Young KH, Pascarella M, Perbellini O, Carli G, et al. Epstein-Barr virus DNA load in chronic lymphocytic leukemia is an independent predictor of clinical course and survival. Oncotarget. 2015;6(21):18653.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Chiorazzi N, Rai KR, Ferrarini M. Chronic lymphocytic leukemia. N Engl J Med. 2005;352(8):804–15.

    Article  CAS  PubMed  Google Scholar 

  10. Ramsay AG, Clear AJ, Fatah R, Gribben JG. Multiple inhibitory ligands induce impaired T-cell immunologic synapse function in chronic lymphocytic leukemia that can be blocked with lenalidomide: establishing a reversible immune evasion mechanism in human cancer. Blood. 2012;120(7):1412–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nunes C, Wong R, Mason M, Fegan C, Man S, Pepper C. Expansion of a CD8+ PD-1+ replicative senescence phenotype in early stage CLL patients is associated with inverted CD4: CD8 ratios and disease progression. Clin Cancer Res. 2012;18(3):678–87.

    Article  CAS  PubMed  Google Scholar 

  12. Riches JC, Davies JK, McClanahan F, Fatah R, Iqbal S, Agrawal S, et al. T cells from CLL patients exhibit features of T-cell exhaustion but retain capacity for cytokine production. Blood. 2013;121(9):1612–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zou W, Chen L. Inhibitory B7-family molecules in the tumour microenvironment. Nat Rev Immunol. 2008;8(6):467–77.

    Article  CAS  PubMed  Google Scholar 

  14. Küppers R. B cells under influence: transformation of B cells by Epstein-Barr virus. Nat Rev Immunol. 2003;3(10):801–12.

    Article  PubMed  Google Scholar 

  15. De Roos AJ, Martínez-Maza O, Jerome KR, Mirick DK, Kopecky KJ, Madeleine MM, et al. Investigation of Epstein-Barr virus as a potential cause of B-cell non-Hodgkin lymphoma in a prospective cohort. Cancer Epidemiol Prevent Biomarkers. 2013;22(10):1747–55.

    Article  Google Scholar 

  16. Klein E, Nagy N. Restricted expression of EBV encoded proteins in in vitro infected CLL cells. Semin Cancer Biol. 2010;20(6):410–5.

    Article  CAS  PubMed  Google Scholar 

  17. Thorley-Lawson DA, Gross A. Persistence of the Epstein-Barr virus and the origins of associated lymphomas. N Engl J Med. 2004;350(13):1328–37.

    Article  CAS  PubMed  Google Scholar 

  18. Ambinder RF. Epstein-Barr virus associated lymphoproliferations in the AIDS setting. Eur J Cancer. 2001;37(10):1209–16.

    Article  CAS  PubMed  Google Scholar 

  19. Ok CY, Li L, Xu-Monette ZY, Visco C, Tzankov A, Manyam GC, et al. Prevalence and clinical implications of Epstein-Barr virus infection in de novo diffuse large B-cell lymphoma in Western countries. Clin Cancer Res. 2014;20(9):2338–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. García-Barchino MJ, Sarasquete ME, Panizo C, Morscio J, Martinez A, Alcoceba M, et al. Richter transformation driven by Epstein-Barr virus reactivation during therapy-related immunosuppression in chronic lymphocytic leukaemia. J Pathol. 2018;245(1):61–73.

    Article  PubMed  Google Scholar 

  21. Green MR, Rodig S, Juszczynski P, Ouyang J, Sinha P, O’Donnell E, et al. Constitutive AP-1 activity and EBV infection induce PD-L1 in Hodgkin lymphomas and posttransplant lymphoproliferative disorders: implications for targeted therapy. Clin Cancer Res. 2012;18(6):1611–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Grzywnowicz M, Zaleska J, Mertens D, Tomczak W, Wlasiuk P, Kosior K, et al. Programmed death-1 and its ligand are novel immunotolerant molecules expressed on leukemic B cells in chronic lymphocytic leukemia. PLoS ONE. 2012;7(4):e35178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Xerri L, Chetaille B, Seriari N, Attias C, Guillaume Y, Arnoulet C, et al. Programmed death 1 is a marker of angioimmunoblastic T-cell lymphoma and B-cell small lymphocytic lymphoma/chronic lymphocytic leukemia. Hum Pathol. 2008;39(7):1050–8.

    Article  CAS  PubMed  Google Scholar 

  24. Swerdlow SH, Campo E, Pileri SA, Harris NL, Stein H, Siebert R, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016;127(20):2375–90. https://doi.org/10.1182/blood-2016-01-643569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hallek M, Cheson BD, Catovsky D, Caligaris-Cappio F, Dighiero G, Döhner H, et al. iwCLL guidelines for diagnosis, indications for treatment, response assessment, and supportive management of CLL. Blood. 2018;131(25):2745–60. https://doi.org/10.1182/blood-2017-09-806398.

    Article  CAS  PubMed  Google Scholar 

  26. Rodrigues CA, Gonçalves MV, Ikoma MR, Lorand-Metze I, Pereira AD, Farias DL, et al. Diagnosis and treatment of chronic lymphocytic leukemia: recommendations from the Brazilian Group of Chronic Lymphocytic Leukemia. Rev Bras Hematol Hemoter. 2016;38(4):346–57.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Smoley SA, Van Dyke DL, Kay NE, Heerema NA, Dell’ Aquila ML, Dal Cin P, et al. Standardization of fluorescence in situ hybridization studies on chronic lymphocytic leukemia (CLL) blood and marrow cells by the CLL Research Consortium. Cancer Genet Cytogenet. 2010;203(2):141–8. https://doi.org/10.1016/j.cancergencyto.2010.08.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402–8.

    Article  CAS  PubMed  Google Scholar 

  29. Rai KR, Gupta N. Staging of Chronic Lymphocytic Leukemia. In: Faguet GB (eds). Chronic Lymphocytic Leukemia. Contemporary Hematology. Humana Press, Totowa, NJ; 2004. p. 193-9. https://doi.org/10.1007/978-1-59259-412-2_10.

  30. Ribas A. Tumor immunotherapy directed at PD-1. N Engl J Med. 2012;366(26):2517–9. https://doi.org/10.1056/NEJMe1205943.

    Article  CAS  PubMed  Google Scholar 

  31. Wherry EJ, Kurachi M. Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol. 2015;15(8):486–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rusak M, Eljaszewicz A, Bołkun Ł, Łuksza E, Łapuć I, Piszcz J, et al. Prognostic significance of PD-1 expression on peripheral blood CD4+ T cells in patients with newly diagnosed chronic lymphocytic leukemia. Pol Arch Med Wewn. 2015;125(7–8):553–9.

    PubMed  Google Scholar 

  33. Brusa D, Serra S, Coscia M, Rossi D, D’Arena G, Laurenti L, et al. The PD-1/PD-L1 axis contributes to T-cell dysfunction in chronic lymphocytic leukemia. Haematologica. 2013;98(6):953–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kawahara T, Ishiguro Y, Ohtake S, Kato I, Ito Y, Ito H, et al. PD-1 and PD-L1 are more highly expressed in high-grade bladder cancer than in low-grade cases: PD-L1 might function as a mediator of stage progression in bladder cancer. BMC Urol. 2018;18(1):97. https://doi.org/10.1186/s12894-018-0414-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kawamoto K, Miyoshi H, Suzuki T, Kiyasu J, Yokoyama S, Sasaki Y, et al. Expression of programmed death ligand 1 is associated with poor prognosis in myeloid sarcoma patients. Hematol Oncol. 2018;36(3):591–9.

    Article  CAS  PubMed  Google Scholar 

  36. Hsu MC, Hsiao JR, Chang KC, Wu YH, Su IJ, Jin YT, et al. Increase of programmed death-1-expressing intratumoral CD8 T cells predicts a poor prognosis for nasopharyngeal carcinoma. Mod Pathol. 2010;23(10):1393–403.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors would like to thank all the patients and their families for participating in this project. They also acknowledge the team of the Molecular Biology Research Lab in the Medical Research Center of Alexandria Faculty of Medicine.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Gamaleldin.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Ethics approval

The study was conducted after approval of the Medical Ethics Committee of Alexandria Faculty of Medicine.

Informed consent

All study participants gave written informed consents after explaining the nature, steps and aim of the study.

Consent for publication

The Authors grant the Publisher permission to publish this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gamaleldin, M.A., Ghallab, O.M., Nadwan, E.A. et al. PD-1 and PD-L1 gene expressions and their association with Epstein-Barr virus infection in chronic lymphocytic leukemia. Clin Transl Oncol 23, 2309–2322 (2021). https://doi.org/10.1007/s12094-021-02657-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-021-02657-y

Keywords

Navigation