Skip to main content

Advertisement

Log in

Circulating non-coding RNAs as new biomarkers and novel therapeutic targets in colorectal cancer

  • Review Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Colorectal cancer (CRC) is one of the most common malignant tumors, and a large number of patients are diagnosed and die every year. Due to the lack of appropriate diagnosis, prediction and treatment, early diagnosis rate of CRC is low and the prognosis is poor. Studies have found that abnormally expressed non-coding RNAs (ncRNAs) (including microRNAs (miRNAs), circular RNAs (circRNAs) and long non-coding RNAs (lncRNAs),etc.) play an important regulatory role in the occurrence and development of CRC. Some studies have shown that they are stable in the blood and can be detected repeatedly. They are expected to be non-invasive biomarkers for early diagnosis, prognosis evaluation, and prediction of drug sensitivity of CRC, as well as potential applications in the treatment of CRC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

source of circulating ncRNAs in CRC

Similar content being viewed by others

Abbreviations

CRC:

Colorectal cancer

ncRNAs:

Non-coding RNAs

miRNAs:

MicroRNAs

circRNA:

Circular RNAs

lncRNAs:

Long non-coding RNAs

CRAs:

Colorectal adenomas

CEA:

Carcinoembryonic antigen

CA199:

Carbohydrate antigen199

CA125:

Carbohydrate antigen125

WGS:

Whole genome sequencing

tRNAs:

Transfer RNAs

rRNAs:

Ribosomal RNAs

snoRNAs:

Small nucleoli RNAs

ROC:

Receiver operating characteristics

NSCLC:

Non-small cell lung cancer

MVs:

Microvesicles

MPs:

Microparticles

SPRED1:

Sprouty related proteins 1

VCAM-1:

Vascular cell adhesion molecule-1

CXCL12:

Chemokine (C-X-C motif) ligand 12

AGO:

Argonaute

HDL:

High-density lipoprotein

AUC:

Area under the curve

CEA:

Carcinoembryonic antigen

ROC:

Receiver operating characteristics

TNM:

Tumor Node Metastasis

OS:

Overall survival

FOLFOX:

Fluorouracil plus oxaliplatin

XELOX:

Capecitabine plus oxaliplatin

NFIX:

Nuclear factor I/X

Bcl-2:

B cell lymphoma-2

MVP:

Main vault protein

ITGA2:

Integrin Alpha 2

ZEB1:

Zinc-finger E-box binding homeobox1

PDCD10:

Programmed cell death 10

RNase:

Ribonuclease

BIDs:

Benign intestinal diseases

HCs:

Healthy controls

FCHSD2:

FCH and double SH3 domains protein 2

siRNA:

Small stranded RNA

H19:

The reciprocally imprinted partner of Igf2

HOTTIP:

HOXA distal transcript antisense RNA

HULC:

Highly up-regulated in liver cancer

CCAT2:

Colon cancer-associated transcript 2

CRNDE-h:

Colorectal neoplasia differentially expressed-h

ZFAS1:

Zinc finger antisense 1

GNAT1-1:

G protein subunit α transducin 1

NATs:

Normal appearing tissues

HIF1A-AS1:

HIF 1alpha-antisense RNA 1

GAS5:

Growth arrest-specific transcript 5

RFS:

Relapse-free survival

RPPH1:

RNAse P RNA component H1

DFS:

Disease-free survival

UCA1:

Urothelial carcinoma-associated 1

XIST:

X Inactive Specific Transcript

MEG3:

Maternally expressed gene 3

Erk:

Extracellular regulated protein kinases

EMT:

Epithelial-mesenchymal transition

SNHG11:

Small nucleolar host gene 11

CCAL:

Colorectal cancer-associated lncRNA

HuR:

Human antigen R

mRNA:

Messenger RNA

TUBB3:

Beta-III tubulin

MYO6:

Myosins of class VI

ceRNA:

Competing endogenous RNAs

piRNA:

PIWI interacting RNA

snRNA:

Small nuclear RNA

siRNA:

Small interfering RNA

RNU2-1F:

U2 snRNA fragment

PFS:

Progression free survival

ORs:

Odds ratio

STAT3:

Signal transducer and activator of transcription 3

PIWIL2:

Piwi-like protein 2

P-SRC:

Phosphorylated Src

mRNA:

Messenger RNA

VEGF:

Vascular endothelial growth factorVEGF

IGF-1R:

Insulin-like growth factor receptorIGF-1R

MRP2:

Multidrug resistance associated protein

References

  1. Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.

    Article  PubMed  Google Scholar 

  2. Sun Z, Liu J, Chen C, et al. The biological effect and clinical application of long noncoding RNAs in colorectal cancer. Cell Physiol Biochem. 2018;46(2):431–41.

    Article  CAS  PubMed  Google Scholar 

  3. Toiyama Y, Okugawa Y, Fleshman J, et al. MicroRNAs as potential liquid biopsy biomarkers in colorectal cancer: a systematic review. Biochim Biophys Acta Rev Cancer. 2018;2:274–82.

    Article  CAS  Google Scholar 

  4. Cheung KWE, Choi S-y R, Lee LTC, et al. The potential of circulating cell free RNA as a biomarker in cancer. Expert Rev Mol Diagn. 2019;19(7):579–90.

    Article  CAS  PubMed  Google Scholar 

  5. Levin B, Lieberman DA, McFarland B, et al. Screening and surveillance for the early detection of colorectal cancer and adenomatous polyps, 2008: a joint guideline from the American cancer society, the us multi-society task force on colorectal cancer, and the American college of radiology. CA Cancer J Clin. 2008;58(3):130–60.

    Article  PubMed  Google Scholar 

  6. Du M, Liu S, Gu D, et al. Clinical potential role of circulating microRNAs in early diagnosis of colorectal cancer patients. Carcinogenesis. 2014;35(12):2723–30.

    Article  CAS  PubMed  Google Scholar 

  7. Wei L, Wang X, Lv L, et al. The emerging role of noncoding RNAs in colorectal cancer chemoresistance. Cell Oncol. 2019;42(6):757–68.

    Article  CAS  Google Scholar 

  8. Wang L, Duan W, Yan S, et al. Circulating long non-coding RNA colon cancer-associated transcript 2 protected by exosome as a potential biomarker for colorectal cancer. Biomed Pharmacother. 2019;113:108758.

    Article  CAS  PubMed  Google Scholar 

  9. Yang F, Liu DY, Guo JT, et al. Circular RNA circ-LDLRAD3 as a biomarker in diagnosis of pancreatic cancer. World J Gastroenterol. 2017;23(47):8345–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hang D, Zhou J, Qin N, et al. A novel plasma circular RNA circFARSA is a potential biomarker for non-small cell lung cancer. Cancer Med. 2018;7(6):2783–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Arroyo JD, Chevillet JR, Kroh EM, et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci. 2011;108(12):5003–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mitchell PS, Parkin RK, Kroh EM, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA. 2008;105(30):10513–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Han D, Gao X, Wang M, et al. Long noncoding RNA H19 indicates a poor prognosis of colorectal cancer and promotes tumor growth by recruiting and binding to eIF4A3. Oncotarget. 2016;7(16):22159–73.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Chen X, Ba Y, Ma L, et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 2008;18(10):997–1006.

    Article  CAS  PubMed  Google Scholar 

  15. Francavilla A, Turoczi S, Tarallo S, et al. Exosomal microRNAs and other non-coding RNAs as colorectal cancer biomarkers: a review. Mutagenesis. 2019. https://doi.org/10.1093/mutage/gez038.

    Article  Google Scholar 

  16. Laktionov PP, Tamkovich SN, Rykova EY, et al. Extracellular circulating nucleic acids in human plasma in health and disease. Nucleosides Nucleotides Nucleic Acids. 2004;23(6–7):879–83.

    Article  CAS  PubMed  Google Scholar 

  17. Montero-Hadjadje M, Elias S, Chevalier L, et al. Chromogranin A promotes peptide hormone sorting to mobile granules in constitutively and regulated secreting cells. J Biol Chem. 2009;284(18):12420–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Llobet A, Wu M, Lagnado L. The mouth of a dense-core vesicle opens and closes in a concerted action regulated by calcium and amphiphysin. J Cell Biol. 2008;182(5):1017–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zernecke A, Bidzhekov K, Noels H, et al. Delivery of MicroRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection. Sci Signal. 2009;2(100):ra81–ra81.

    Article  PubMed  Google Scholar 

  20. Halicka HD, Bedner E, Darzynkiewicz Z. Segregation of RNA and separate packaging of DNA and RNA in apoptotic bodies during apoptosis. Exp Cell Res. 2000;260(2):248–56.

    Article  CAS  PubMed  Google Scholar 

  21. Zen K, Zhang C-Y. Circulating MicroRNAs: a novel class of biomarkers to diagnose and monitor human cancers. Med Res Rev. 2012;32(2):326–48.

    Article  PubMed  CAS  Google Scholar 

  22. Lawrie CH, Gal S, Dunlop HM, et al. Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br J Haematol. 2008;141(5):672–5.

    Article  PubMed  Google Scholar 

  23. Kanaan Z, Rai SN, Eichenberger MR, et al. Plasma miR-21: a potential diagnostic marker of colorectal cancer. Ann Surg. 2012;256(3):544–51.

    Article  PubMed  Google Scholar 

  24. Liu G-H, Zhou Z-G, Chen R, et al. Serum miR-21 and miR-92a as biomarkers in the diagnosis and prognosis of colorectal cancer. Tumor Biol. 2013;34(4):2175–81.

    Article  CAS  Google Scholar 

  25. Toiyama Y, Okugawa Y, Fleshman J, et al. MicroRNAs as potential liquid biopsy biomarkers in colorectal cancer: a systematic review. Biochim Biophys Acta Rev Cancer. 2018;1870(2):274–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Goel A, Wang Q, Huang Z, et al. Plasma miR-601 and miR-760 are novel biomarkers for the early detection of colorectal cancer. PLoS ONE. 2012;7(9):e44398.

    Article  CAS  Google Scholar 

  27. Huang Z, Huang D, Ni S, et al. Plasma microRNAs are promising novel biomarkers for early detection of colorectal cancer. Int J Cancer. 2010;127(1):118–26.

    Article  CAS  PubMed  Google Scholar 

  28. Zou SL, Chen YL, Ge ZZ, et al. Downregulation of serum exosomal miR-150-5p is associated with poor prognosis in patients with colorectal cancer. Cancer Biomark. 2019;26(1):69–77.

    Article  CAS  PubMed  Google Scholar 

  29. Matsumura T, Sugimachi K, Iinuma H, et al. Exosomal microRNA in serum is a novel biomarker of recurrence in human colorectal cancer. Br J Cancer. 2015;113(2):275–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Peng ZY, Gu RH, Yan B. Downregulation of exosome-encapsulated miR-548c-5p is associated with poor prognosis in colorectal cancer. J Cell Biochem. 2018. https://doi.org/10.1002/jcb.27291.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Sun Y, Yang B, Lin M, et al. Identification of serum miR-30a-5p as a diagnostic and prognostic biomarker in colorectal cancer. Cancer Biomarke. 2019;24(3):299–305.

    Article  CAS  Google Scholar 

  32. Yuan D, Li K, Zhu K, et al. Plasma miR-183 predicts recurrence and prognosis in patients with colorectal cancer. Cancer Biol Ther. 2015;16(2):268–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kou CH, Zhou T, Han XL, et al. Downregulation of mir-23b in plasma is associated with poor prognosis in patients with colorectal cancer. Oncol Lett. 2016;12(6):4838–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chen Q, Xia HW, Ge XJ, et al. Serum miR-19a predicts resistance to FOLFOX chemotherapy in advanced colorectal cancer cases. Asian Pac J Cancer Prev. 2013;14(12):7421–6.

    Article  PubMed  Google Scholar 

  35. Liu C, Eng C, Shen J, et al. Serum exosomal miR-4772-3p is a predictor of tumor recurrence in stage II and III colon cancer. Oncotarget. 2016;7(46):76250–60.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Hu J, Cai G, Xu Y, et al. The plasma microRNA miR-1914* and -1915 suppresses chemoresistant in colorectal cancer patients by down-regulating NFIX. Curr Mol Med. 2016;16(1):70–82.

    Article  CAS  PubMed  Google Scholar 

  37. Liu T, Zhang X, Du L, et al. Exosome-transmitted miR-128-3p increase chemosensitivity of oxaliplatin-resistant colorectal cancer. Mol Cancer. 2019;18(1):43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Gu YY, Yu J, Zhang JF, et al. Suppressing the secretion of exosomal miR-19b by gw4869 could regulate oxaliplatin sensitivity in colorectal cancer. Neoplasma. 2019;66(1):39–45.

    Article  CAS  PubMed  Google Scholar 

  39. Xu Y, Zhu M. Novel exosomal miR-46146 transfer oxaliplatin chemoresistance in colorectal cancer. Clin Transl Oncol. 2019. https://doi.org/10.1007/s12094-019-02237-1.

    Article  PubMed  Google Scholar 

  40. Zaharie F, Muresan MS, Petrushev B, et al. Exosome-carried microRNA-375 inhibits cell progression and dissemination via Bcl-2 blocking in colon cancer. J Gastrointest Liver Dis. 2015;24(4):435–43.

    Article  Google Scholar 

  41. Teng Y, Ren Y, Hu X, et al. MVP-mediated exosomal sorting of miR-193a promotes colon cancer progression. Nat Commun. 2017;8:14448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Xu Y, Shen L, Li F, et al. microRNA-16-5p-containing exosomes derived from bone marrow-derived mesenchymal stem cells inhibit proliferation, migration, and invasion, while promoting apoptosis of colorectal cancer cells by downregulating ITGA2. J Cell Physiol. 2019;234(11):21380–94.

    Article  CAS  PubMed  Google Scholar 

  43. Liang G, Zhu Y, Ali DJ, et al. Engineered exosomes for targeted co-delivery of miR-21 inhibitor and chemotherapeutics to reverse drug resistance in colon cancer. J Nanobiotechnol. 2020. https://doi.org/10.1186/s12951-019-0563-2.

    Article  Google Scholar 

  44. Wang Y, Liu J, Ma J, et al. Exosomal circRNAs: biogenesis, effect and application in human diseases. Mol Cancer. 2019;18(1):116.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Memczak S, Papavasileiou P, Peters O, et al. Identification and characterization of circular RNAs as a new class of putative biomarkers in human blood. PLoS ONE. 2015;10(10):e0141214.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Koh W, Pan W, Gawad C, et al. Noninvasive in vivo monitoring of tissue-specific global gene expression in humans. Proc Natl Acad Sci USA. 2014;111(20):7361–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Li Y, Zheng Q, Bao C, et al. Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis. Cell Res. 2015;25(8):981–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lin J, Cai D, Li W, et al. Plasma circular RNA panel acts as a novel diagnostic biomarker for colorectal cancer. Clin Biochem. 2019;74:60–8.

    Article  CAS  PubMed  Google Scholar 

  49. Pan B, Qin J, Liu X, et al. Identification of serum exosomal hsa-circ-0004771 as a novel diagnostic biomarker of colorectal cancer. Front Genet. 2019;10:1096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ye DX, Wang SS, Huang Y, et al. A 3-circular RNA signature as a noninvasive biomarker for diagnosis of colorectal cancer. Cancer Cell Int. 2019. https://doi.org/10.1186/s12935-019-0995-7.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Li XN, Wang ZJ, Ye CX, et al. Circular RNA circVAPA is up-regulated and exerts oncogenic properties by sponging miR-101 in colorectal cancer. Biomed Pharmacother. 2019;112:108611.

    Article  CAS  PubMed  Google Scholar 

  52. Xu Y, Xia J, Liu S, et al. Endocytosis and membrane receptor internalization: implication of F-BAR protein Carom. Front Biosci. 2017;22:1439–57.

    Article  CAS  Google Scholar 

  53. Hon KW, Ab-Mutalib NS, Abdullah NMA, et al. Extracellular vesicle-derived circular RNAs confers chemoresistance in colorectal cancer. Sci Rep. 2019;9(1):16497.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Zhao H, Chen S, Fu Q. Exosomes from CD133(+) cells carrying circ-ABCC1 mediate cell stemness and metastasis in colorectal cancer. J Cell Biochem. 2020. https://doi.org/10.1002/jcb.29600.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Gutschner T, Diederichs S. The hallmarks of cancer. RNA Biol. 2014;9(6):703–19.

    Article  CAS  Google Scholar 

  56. Luo J, Xiong Y, Fu P-f, et al. Exosomal long non-coding RNAs: biological properties and therapeutic potential in cancer treatment. J Zhejiang Univ-Sci B. 2019;20(6):488–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bhan A, Soleimani M, Mandal SS. Long noncoding RNA and cancer: a new paradigm. Can Res. 2017;77(15):3965–81.

    Article  CAS  Google Scholar 

  58. Oehme F, Krahl S, Gyorffy B, et al. Low level of exosomal long non-coding RNA HOTTIP is a prognostic biomarker in colorectal cancer. RNA Biol. 2019;16(10):1339–45.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Liu T, Zhang X, Gao S, et al. Exosomal long noncoding RNA CRNDE-h as a novel serum-based biomarker for diagnosis and prognosis of colorectal cancer. Oncotarget. 2016;7(51):85551–63.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Fang C, Zan J, Yue B, et al. Long non-coding ribonucleic acid zinc finger antisense 1 promotes the progression of colonic cancer by modulating ZEB1 expression. J Gastroenterol Hepatol. 2017;32(6):1204–11.

    Article  CAS  PubMed  Google Scholar 

  61. Ye C, Shen Z, Wang B, et al. A novel long non-coding RNA lnc-GNAT1-1 is low expressed in colorectal cancer and acts as a tumor suppressor through regulating RKIP-NF-kappaB-Snail circuit. J Exp Clin Cancer Res. 2016;35(1):187.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Gong W, Tian M, Qiu H, et al. Elevated serum level of lncRNA-HIF1A-AS1 as a novel diagnostic predictor for worse prognosis in colorectal carcinoma. Cancer Biomark. 2017;20(4):417–24.

    Article  CAS  PubMed  Google Scholar 

  63. Liu L, Meng T, Yang XH, et al. Prognostic and predictive value of long non-coding RNA GAS5 and mircoRNA-221 in colorectal cancer and their effects on colorectal cancer cell proliferation, migration and invasion. Cancer Biomark. 2018;22(2):283–99.

    Article  CAS  PubMed  Google Scholar 

  64. Gao T, Liu X, He B, et al. Exosomal lncRNA 91H is associated with poor development in colorectal cancer by modifying HNRNPK expression. Cancer Cell Int. 2018;18:11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Liang ZX, Liu HS, Wang FW, et al. LncRNA RPPH1 promotes colorectal cancer metastasis by interacting with TUBB3 and by promoting exosomes-mediated macrophage M2 polarization. Cell Death Dis. 2019;10(11):829.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Yang YN, Zhang R, Du JW, et al. Predictive role of UCA1-containing exosomes in cetuximab-resistant colorectal cancer. Cancer Cell Int. 2018;18:164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Xiao Y, Yurievich UA, Yosypovych SV. Long noncoding RNA XIST is a prognostic factor in colorectal cancer and inhibits 5-fluorouracil-induced cell cytotoxicity through promoting thymidylate synthase expression. Oncotarget. 2017;8(47):83171–82.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Li L, Shang J, Zhang Y, et al. MEG3 is a prognostic factor for CRC and promotes chemosensitivity by enhancing oxaliplatin-induced cell apoptosis. Oncol Rep. 2017;38(3):1383–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Li Y, Huang S, Li Y, et al. Decreased expression of LncRNA SLC25A25-AS1 promotes proliferation, chemoresistance, and EMT in colorectal cancer cells. Tumour Biol. 2016;37(10):14205–15.

    Article  CAS  PubMed  Google Scholar 

  70. Xu W, Zhou G, Wang HZ, et al. Circulating lncRNA SNHG11 as a novel biomarker for early diagnosis and prognosis of colorectal cancer. Int J Cancer. 2019. https://doi.org/10.1002/ijc.32747.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Deng X, Ruan H, Zhang X, et al. Long noncoding RNA CCAL transferred from fibroblasts by exosomes promotes chemoresistance of colorectal cancer cells. Int J Cancer. 2020;146(6):1700–16.

    Article  CAS  PubMed  Google Scholar 

  72. Luan Y, Li X, Luan Y, et al. Circulating lncRNA UCA1 promotes malignancy of colorectal cancer via the miR-143/MYO6 axis. Mol Ther Nucleic Acids. 2020;19:790–803.

    Article  CAS  PubMed  Google Scholar 

  73. Ling H, Spizzo R, Atlasi Y, et al. CCAT2, a novel noncoding RNA mapping to 8q24, underlies metastatic progression and chromosomal instability in colon cancer. Genome Res. 2013;23(9):1446–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lin Y, Zheng J, Lin D. PIWI-interacting RNAs in human cancer. Semin Cancer Biol. 2020. https://doi.org/10.1016/j.semcancer.2020.08.012.

    Article  PubMed  Google Scholar 

  75. Ge L, Zhang N, Li D, et al. Circulating exosomal small RNAs are promising non-invasive diagnostic biomarkers for gastric cancer. J Cell Mol Med. 2020. https://doi.org/10.1111/jcmm.16077.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Mai D, Ding P, Tan L, et al. PIWI-interacting RNA-54265 is oncogenic and a potential therapeutic target in colorectal adenocarcinoma. Theranostics. 2018;8(19):5213–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Qu A, Wang W, Yang Y, et al. A serum piRNA signature as promising non-invasive diagnostic and prognostic biomarkers for colorectal cancer. Cancer Manag Res. 2019;11:3703–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Vychytilova-Faltejskova P, Stitkovcova K, Radova L, et al. Circulating PIWI-interacting RNAs piR-5937 and piR-28876 are promising diagnostic biomarkers of colon cancer. Cancer Epidemiol Biomark Prev. 2018;27(9):1019–28.

    Article  CAS  Google Scholar 

  79. Wang Z, Yang H, Ma D, et al. Serum PIWI-Interacting RNAs piR-020619 and piR-020450 are promising novel biomarkers for early detection of colorectal cancer. Cancer Epidemiol Biomarkers Prev. 2020;29(5):990–8.

    Article  CAS  PubMed  Google Scholar 

  80. Mai D, Zheng Y, Guo H, et al. Serum piRNA-54265 is a New Biomarker for early detection and clinical surveillance of Human Colorectal Cancer. Theranostics. 2020;10(19):8468–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Baraniskin A, Nopel-Dunnebacke S, Ahrens M, et al. Circulating U2 small nuclear RNA fragments as a novel diagnostic biomarker for pancreatic and colorectal adenocarcinoma. Int J Cancer. 2013;132(2):E48–57.

    Article  CAS  PubMed  Google Scholar 

  82. Aghamiri S, Jafarpour A, Malekshahi ZV, et al. Targeting siRNA in colorectal cancer therapy: nanotechnology comes into view. J Cell Physiol. 2019;234(9):14818–27.

    Article  CAS  Google Scholar 

  83. Yin Y, Cao LY, Wu WQ, et al. Blocking effects of siRNA on VEGF expression in human colorectal cancer cells. World J Gastroenterol. 2010;16(9):1086–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Shen K, Cui D, Sun L, et al. Inhibition of IGF-IR increases chemosensitivity in human colorectal cancer cells through MRP-2 promoter suppression. J Cell Biochem. 2012;113(6):2086–97.

    Article  CAS  PubMed  Google Scholar 

  85. Li P, Chen W, Wang Y, et al. Effects of ephrinB2 gene siRNA on the biological behavior of human colorectal cancer cells. Oncol Rep. 2015;33(2):758–66.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Ningbo (No.2016A610121).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Zhang.

Ethics declarations

Conflict of interest

The authors declared no potential conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Zhang, X. & Hu, G. Circulating non-coding RNAs as new biomarkers and novel therapeutic targets in colorectal cancer. Clin Transl Oncol 23, 2220–2236 (2021). https://doi.org/10.1007/s12094-021-02639-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-021-02639-0

Keywords

Navigation