Skip to main content

Advertisement

Log in

Cellular immunotherapy: a clinical state-of-the-art of a new paradigm for cancer treatment

  • Review Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Cancer immunotherapy has opened a new chapter in Medical Oncology. Many novel therapies are under clinical testing and some have already been approved and implemented in cancer treatment protocols. In particular, cellular immunotherapies take advantage of the antitumor capabilities of the immune system. From dendritic cell-based vaccines to treatments centered on genetically engineered T cells, this form of personalized cancer therapy has taken the field by storm. They commonly share the ex vivo genetic modification of the patient’s immune cells to generate or induce tumor antigen-specific immune responses. The latest clinical trials and translational research have shed light on its clinical effectiveness as well as on the mechanisms behind targeting specific antigens or unique tumor alterations. This review gives an overview of the clinical developments in immune cell-based technologies predominantly for solid tumors and on how the latest discoveries are being incorporated within the standard of care.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Yang Y. Cancer immunotherapy: harnessing the immune system to battle cancer. J Clin Invest. 2015;125(9):3335–7.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Rosenberg SA, Restifo NP. Adoptive cell transfer as personalized immunotherapy for human cancer. Science. 2015;348(6230):62–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Coulie PG, et al. Tumour antigens recognized by T lymphocytes: at the core of cancer immunotherapy. Nat Rev Cancer. 2014;14(2):135–46.

    Article  CAS  PubMed  Google Scholar 

  4. Timmerman JM, et al. Idiotype-pulsed dendritic cell vaccination for B-cell lymphoma: clinical and immune responses in 35 patients. Blood. 2002;99(5):1517–26.

    Article  CAS  PubMed  Google Scholar 

  5. Rosenblatt J, et al. Vaccination with dendritic cell/tumor fusions following autologous stem cell transplant induces immunologic and clinical responses in multiple myeloma patients. Clin Cancer Res. 2013;19(13):3640–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Anguille S, et al. Dendritic cell vaccination as post-remission treatment to prevent or delay relapse in acute myeloid leukemia. Blood. 2017;130(15):1713–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Anguille S, et al. Clinical use of dendritic cells for cancer therapy. Lancet Oncol. 2014;15(7):e257–e267267.

    Article  CAS  PubMed  Google Scholar 

  8. Higano CS, et al. Integrated data from 2 randomized, double-blind, placebo-controlled, phase 3 trials of active cellular immunotherapy with sipuleucel-T in advanced prostate cancer. Cancer. 2009;115(16):3670–9.

    Article  CAS  PubMed  Google Scholar 

  9. Bol KF, et al. Dendritic cell-based immunotherapy: state of the art and beyond. Clin Cancer Res. 2016;22(8):1897–906.

    Article  CAS  PubMed  Google Scholar 

  10. Saxena M, Bhardwaj N. Re-emergence of dendritic cell vaccines for cancer treatment. Trends Cancer. 2018;4(2):119–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pernar CH, et al. The epidemiology of prostate cancer. Cold Spring Harb Perspect Med. 2018;8(12):a030361.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Saini S. PSA and beyond: alternative prostate cancer biomarkers. Cell Oncol (Dordr). 2016;39(2):97–106.

    Article  CAS  Google Scholar 

  13. Graddis TJ, et al. Prostatic acid phosphatase expression in human tissues. Int J Clin Exp Pathol. 2011;4(3):295–306.

    PubMed  PubMed Central  Google Scholar 

  14. Small EJ, et al. Placebo-controlled phase III trial of immunologic therapy with sipuleucel-T (APC8015) in patients with metastatic, asymptomatic hormone refractory prostate cancer. J Clin Oncol. 2006;24(19):3089–94.

    Article  CAS  PubMed  Google Scholar 

  15. Kantoff PW, et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med. 2010;363(5):411–22.

    Article  CAS  PubMed  Google Scholar 

  16. Chen R, et al. Glioma subclassifications and their clinical significance. Neurotherapeutics. 2017;14(2):284–97.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Weller M, et al. Glioma Nat Rev Dis Primers. 2015;1:15017.

    Article  PubMed  Google Scholar 

  18. Jovcevska I, Kocevar N, Komel R. Glioma and glioblastoma - how much do we (not) know? Mol Clin Oncol. 2013;1(6):935–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Polyzoidis S, et al. Active dendritic cell immunotherapy for glioblastoma: current status and challenges. Br J Neurosurg. 2015;29(2):197–205.

    Article  PubMed  Google Scholar 

  20. Liau LM, et al. First results on survival from a large phase 3 clinical trial of an autologous dendritic cell vaccine in newly diagnosed glioblastoma. J Transl Med. 2018;16(1):142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hsieh JJ, et al. Renal cell carcinoma. Nat Rev Dis Primers. 2017;3:17009.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Amin A, et al. Survival with AGS-003, an autologous dendritic cell-based immunotherapy, in combination with sunitinib in unfavorable risk patients with advanced renal cell carcinoma (RCC): phase 2 study results. J Immunother Cancer. 2015;3:14.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Figlin RA, et al. Results of the ADAPT trial; a randomized phase 3 study of Rocapuldencel-T an autologous dendritic cell-based vaccine, in combination with sunitinib as first-line therapy in patients with groups metastatic clear-cell renal cell carcinoma. Clin Cancer Res. 2020. pii: clincanres.2427.2019.

  24. Schadendorf D, et al. Dacarbazine (DTIC) versus vaccination with autologous peptide-pulsed dendritic cells (DC) in first-line treatment of patients with metastatic melanoma: a randomized phase III trial of the DC study group of the DeCOG. Ann Oncol. 2006;17(4):563–70.

    Article  CAS  PubMed  Google Scholar 

  25. Dillman RO, et al. Tumor stem cell antigens as consolidative active specific immunotherapy: a randomized phase II trial of dendritic cells versus tumor cells in patients with metastatic melanoma. J Immunother. 2012;35(8):641–9.

    Article  PubMed  CAS  Google Scholar 

  26. El Beaino M, et al. Synovial sarcoma: advances in diagnosis and treatment identification of new biologic targets to improve multimodal therapy. Ann Surg Oncol. 2017;24(8):2145–54.

    Article  PubMed  Google Scholar 

  27. Berneman ZN, et al. Dendritic cell vaccination in malignant pleural mesothelioma: a phase I/II study. J Clin Oncol. 2014;32(15 suppl):7583–7583.

    Article  Google Scholar 

  28. Di S, Li Z. Treatment of solid tumors with chimeric antigen receptor-engineered T cells: current status and future prospects. Sci China Life Sci. 2016;59(4):360–9.

    Article  CAS  PubMed  Google Scholar 

  29. Maude SL, et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med. 2018;378(5):439–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kansagra AJ, et al. Clinical utilization of chimeric antigen receptor T cells in B cell acute lymphoblastic leukemia: an expert opinion from the European society for blood and marrow transplantation and the American society for blood and marrow transplantation. Biol Blood Marrow Transplant. 2019;25(3):e76–e85.

    Article  CAS  PubMed  Google Scholar 

  31. Neelapu SS, et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N Engl J Med. 2017;377(26):2531–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Locke FL, et al. Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1): a single-arm, multicentre, phase 1–2 trial. Lancet Oncol. 2019;20(1):31–42.

    Article  CAS  PubMed  Google Scholar 

  33. Kochenderfer JN, et al. Long-duration complete remissions of diffuse large B cell lymphoma after Anti-CD19 chimeric antigen receptor T cell therapy. Mol Ther. 2017;25(10):2245–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yu S, et al. Chimeric antigen receptor T cells: a novel therapy for solid tumors. J Hematol Oncol. 2017;10(1):78.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Raje N, et al. Anti-BCMA CAR T-cell therapy bb2121 in relapsed or refractory multiple myeloma. N Engl J Med. 2019;380(18):1726–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fan F, et al. Durable remissions with BCMA specific chimeric antigen receptor (CAR)-modified T cells in patients with refractory/relapsed multiple myeloma. J Clin Oncol. 2017;35(15_suppl):LBA3001.

    Article  Google Scholar 

  37. Jackson HJ, Rafiq S, Brentjens RJ. Driving CAR T-cells forward. Nat Rev Clin Oncol. 2016;13(6):370–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fesnak AD, June CH, Levine BL. Engineered T cells: the promise and challenges of cancer immunotherapy. Nat Rev Cancer. 2016;16(9):566–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hartmann J, et al. Clinical development of CAR T cells-challenges and opportunities in translating innovative treatment concepts. EMBO Mol Med. 2017;9(9):1183–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Migliorini D, et al. CAR T-Cell therapies in glioblastoma: a first look. Clin Cancer Res. 2018;24(3):535–40.

    Article  CAS  PubMed  Google Scholar 

  41. Lim M, et al. Current state of immunotherapy for glioblastoma. Nat Rev Clin Oncol. 2018;15(7):422–42.

    Article  CAS  PubMed  Google Scholar 

  42. O'Rourke DM, et al. A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma. Sci Transl Med. 2017;9(399):eaaa0984.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Sengupta S, et al. Chimeric antigen receptors for treatment of glioblastoma: a practical review of challenges and ways to overcome them. Cancer Gene Ther. 2017;24(3):121–9.

    Article  CAS  PubMed  Google Scholar 

  44. Park JR, et al. Adoptive transfer of chimeric antigen receptor re-directed cytolytic T lymphocyte clones in patients with neuroblastoma. Mol Ther. 2007;15(4):825–33.

    Article  CAS  PubMed  Google Scholar 

  45. Louis CU, et al. Antitumor activity and long-term fate of chimeric antigen receptor-positive T cells in patients with neuroblastoma. Blood. 2011;118(23):6050–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yang L, et al. Chimeric antigen receptor 4SCAR-GD2-modified T Cells targeting high-risk and recurrent neuroblastoma: a phase II multi-center trial in China. Blood. 2017;130(Supplement 1):3335–3335.

    Google Scholar 

  47. Mata M, Gottschalk S. Adoptive cell therapy for sarcoma. Immunotherapy. 2015;7(1):21–35.

    Article  CAS  PubMed  Google Scholar 

  48. Ahmed N, et al. Human epidermal growth factor receptor 2 (HER2) -specific chimeric antigen receptor-modified T cells for the immunotherapy of HER2-positive sarcoma. J Clin Oncol. 2015;33(15):1688–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Feng K, et al. Chimeric antigen receptor-modified T cells for the immunotherapy of patients with EGFR-expressing advanced relapsed/refractory non-small cell lung cancer. Sci China Life Sci. 2016;59(5):468–79.

    Article  CAS  PubMed  Google Scholar 

  50. Guo Y, et al. Phase I study of chimeric antigen receptor-modified T cells in patients with EGFR-positive advanced biliary tract cancers. Clin Cancer Res. 2018;24(6):1277–86.

    Article  CAS  PubMed  Google Scholar 

  51. Feng K, et al. Phase I study of chimeric antigen receptor modified T cells in treating HER2-positive advanced biliary tract cancers and pancreatic cancers. Protein Cell. 2018;9(10):838–47.

    Article  CAS  PubMed  Google Scholar 

  52. Katz SC, et al. Phase I hepatic immunotherapy for metastases study of intra-arterial chimeric antigen receptor-modified T-cell therapy for CEA+ liver metastases. Clin Cancer Res. 2015;21(14):3149–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhang C, et al. Phase I escalating-dose trial of CAR-T therapy targeting CEA(+) metastatic colorectal cancers. Mol Ther. 2017;25(5):1248–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Morello A, Sadelain M, Adusumilli PS. Mesothelin-targeted CARs: driving T cells to solid tumors. Cancer Discov. 2016;6(2):133–46.

    Article  CAS  PubMed  Google Scholar 

  55. Junghans RP, et al. Phase trial of anti-PSMA designer T cells in advanced prostate cancer. J Clin Oncol. 2010;28(15_suppl):e13614.

    Article  Google Scholar 

  56. Norelli M, et al. Monocyte-derived IL-1 and IL-6 are differentially required for cytokine-release syndrome and neurotoxicity due to CAR T cells. Nat Med. 2018;24(6):739–48.

    Article  CAS  PubMed  Google Scholar 

  57. Thompson JA, et al. Management of immunotherapy-related toxicities version 1.2019. J Natl Compr Canc Netw. 2019;17(3):255–89.

    Article  CAS  PubMed  Google Scholar 

  58. Yang JC. Toxicities associated with adoptive T-cell transfer for cancer. Cancer J. 2015;21(6):506–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Neelapu SS, et al. Chimeric antigen receptor T-cell therapy - assessment and management of toxicities. Nat Rev Clin Oncol. 2018;15(1):47–62.

    Article  CAS  PubMed  Google Scholar 

  60. Karschnia P, et al. Clinical presentation, management, and biomarkers of neurotoxicity after adoptive immunotherapy with CAR T cells. Blood. 2019;133(20):2212–21.

    Article  CAS  PubMed  Google Scholar 

  61. Graus F, Dalmau J. Paraneoplastic neurological syndromes in the era of immune-checkpoint inhibitors. Nat Rev Clin Oncol. 2019;16(9):535–48.

    Article  CAS  PubMed  Google Scholar 

  62. Rosenberg SA, et al. Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nat Rev Cancer. 2008;8(4):299–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ping Y, Liu C, Zhang Y. T-cell receptor-engineered T cells for cancer treatment: current status and future directions. Protein Cell. 2018;9(3):254–66.

    Article  PubMed  Google Scholar 

  64. Tran E, Robbins PF, Rosenberg SA. 'Final common pathway' of human cancer immunotherapy: targeting random somatic mutations. Nat Immunol. 2017;18(3):255–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Morgan RA, et al. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science. 2006;314(5796):126–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Johnson LA, et al. Gene therapy with human and mouse T-cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen. Blood. 2009;114(3):535–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kawakami Y, et al. Recognition of multiple epitopes in the human melanoma antigen gp100 by tumor-infiltrating T lymphocytes associated with in vivo tumor regression. J Immunol. 1995;154(8):3961–8.

    CAS  PubMed  Google Scholar 

  68. Kawakami Y, Rosenberg SA. Human tumor antigens recognized by T-cells. Immunol Res. 1997;16(4):313–39.

    Article  CAS  PubMed  Google Scholar 

  69. Robbins PF, et al. A pilot trial using lymphocytes genetically engineered with an NY-ESO-1-reactive T-cell receptor: long-term follow-up and correlates with response. Clin Cancer Res. 2015;21(5):1019–27.

    Article  CAS  PubMed  Google Scholar 

  70. Nowicki TS, et al. A pilot trial of the combination of transgenic NY-ESO-1-reactive adoptive cellular therapy with dendritic cell vaccination with or without Ipilimumab. Clin Cancer Res. 2019;25(7):2096–108.

    Article  CAS  PubMed  Google Scholar 

  71. Mackall C, et al. Open label, non-randomized, multi-cohort pilot study of genetically engineered NY-ESO-1 specific NY-ESO-1c259t in HLA-A2+ patients with synovial sarcoma (NCT01343043). J Clin Oncol. 2017;35(15_suppl):3000.

    Article  Google Scholar 

  72. Lu YC, et al. Treatment of patients with metastatic cancer using a major histocompatibility complex class II-restricted T-cell receptor targeting the cancer germline antigen MAGE-A3. J Clin Oncol. 2017;35(29):3322–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Morgan RA, et al. Cancer regression and neurological toxicity following anti-MAGE-A3 TCR gene therapy. J Immunother. 2013;36(2):133–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Mackall C, et al. (2016) Cytokine release syndrome (CRS) in patients treated with NY-ESO-1c259 TCR. J Clin Oncol. 2016;34(15_suppl):3040–3040.

    Article  Google Scholar 

  75. Butler MO, et al. 1183PDAdoptive T cell therapy with TBI-1301 results in gene-engineered T cell persistence and anti-tumour responses in patients with NY-ESO-1 expressing solid tumours. Ann Oncol. 1183PDAdoptive;30:mdz253-009.

    Google Scholar 

  76. D'Angelo SP, et al. Antitumor activity associated with prolonged persistence of adoptively transferred NY-ESO-1 (c259)T cells in synovial sarcoma. Cancer Discov. 2018;8(8):944–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Campillo-Davo D, et al. Efficient and non-genotoxic RNA-based engineering of human T cells using tumor-specific T cell receptors with minimal TCR mispairing. Front Immunol. 2018;9:2503.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Benítez-Ribas.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Ethical approval

This article does not contain any studies nor samples involving human and/or animal subjects.

Informed consent

For this type of study formal consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez Pérez, Á., Campillo-Davo, D., Van Tendeloo, V.F.I. et al. Cellular immunotherapy: a clinical state-of-the-art of a new paradigm for cancer treatment. Clin Transl Oncol 22, 1923–1937 (2020). https://doi.org/10.1007/s12094-020-02344-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-020-02344-4

Keywords

Navigation