Herbst RS. Review of epidermal growth factor receptor biology. Int J Radiat Oncol Biol Phys. 2004;59(2 Suppl):21–6. https://doi.org/10.1016/j.ijrobp.2003.11.041.
CAS
Article
PubMed
Google Scholar
Humblet Y. Cetuximab: an IgG(1) monoclonal antibody for the treatment of epidermal growth factor receptor-expressing tumours. Expert Opin Pharmacother. 2004;5(7):1621–33. https://doi.org/10.1517/14656566.5.7.1621.
CAS
Article
PubMed
Google Scholar
Bussink J, van der Kogel AJ, Kaanders JH. Activation of the PI3-K/AKT pathway and implications for radioresistance mechanisms in head and neck cancer. Lancet Oncol. 2008;9(3):288–96. https://doi.org/10.1016/S1470-2045(08)70073-1.
CAS
Article
PubMed
Google Scholar
Yamamoto VN, Thylur DS, Bauschard M, Schmale I, Sinha UK. Overcoming radioresistance in head and neck squamous cell carcinoma. Oral Oncol. 2016;63:44–51. https://doi.org/10.1016/j.oraloncology.2016.11.002.
Article
PubMed
Google Scholar
Bonner JA, Harari PM, Giralt J, Azarnia N, Shin DM, Cohen RB, et al. Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N Engl j Med. 2006;354(6):567–78. https://doi.org/10.1056/NEJMoa053422.
CAS
Article
PubMed
Google Scholar
Petrelli F, Coinu A, Riboldi V, Borgonovo K, Ghilardi M, Cabiddu M, et al. Concomitant platinum-based chemotherapy or cetuximab with radiotherapy for locally advanced head and neck cancer: a systematic review and meta-analysis of published studies. Oral Oncol. 2014;50(11):1041–8. https://doi.org/10.1016/j.oraloncology.2014.08.005.
CAS
Article
PubMed
Google Scholar
Ang KK, Zhang Q, Rosenthal DI, Nguyen-Tan PF, Sherman EJ, Weber RS, et al. Randomized phase III trial of concurrent accelerated radiation plus cisplatin with or without cetuximab for stage III to IV head and neck carcinoma: RTOG 0522. J clin oncol off J Am Soc Clin Oncol. 2014;32(27):2940–50. https://doi.org/10.1200/JCO.2013.53.5633.
CAS
Article
Google Scholar
James ML, Gambhir SS. A molecular imaging primer: modalities, imaging agents, and applications. Physiol Rev. 2012;92(2):897–965. https://doi.org/10.1152/physrev.00049.2010.
CAS
Article
PubMed
Google Scholar
Milenic DE, Wong KJ, Baidoo KE, Ray GL, Garmestani K, Williams M, et al. Cetuximab: preclinical evaluation of a monoclonal antibody targeting EGFR for radioimmunodiagnostic and radioimmunotherapeutic applications. Cancer Biother Radiopharm. 2008;23(5):619–31. https://doi.org/10.1089/cbr.2008.0493.
CAS
Article
PubMed
PubMed Central
Google Scholar
Huhtala T, Laakkonen P, Sallinen H, Yla-Herttuala S, Narvanen A. In vivo SPECT/CT imaging of human orthotopic ovarian carcinoma xenografts with 111In-labeled monoclonal antibodies. Nucl Med Biol. 2010;37(8):957–64. https://doi.org/10.1016/j.nucmedbio.2010.03.001.
CAS
Article
PubMed
Google Scholar
van Dijk LK, Hoeben BA, Stegeman H, Kaanders JH, Franssen GM, Boerman OC, et al. 111In-cetuximab-F(ab’)2 SPECT imaging for quantification of accessible epidermal growth factor receptors (EGFR) in HNSCC xenografts. Radiother Oncol J Eur Soc Thera Radiol Oncol. 2013;108(3):484–8. https://doi.org/10.1016/j.radonc.2013.06.034.
CAS
Article
Google Scholar
Shih YH, Peng CL, Lee SY, Chiang PF, Yao CJ, Lin WJ, et al. 111In-cetuximab as a diagnostic agent by accessible epidermal growth factor (EGF) receptor targeting in human metastatic colorectal carcinoma. Oncotarget. 2015;6(18):16601–10. https://doi.org/10.18632/oncotarget.3968.
Article
PubMed
PubMed Central
Google Scholar
Lee SY, Hong YD, Kim HS, Choi SJ. Synthesis and application of a novel cysteine-based DTPA-NCS for targeted radioimmunotherapy. Nucl Med Biol. 2013;40(3):424–9. https://doi.org/10.1016/j.nucmedbio.2012.12.007.
CAS
Article
PubMed
Google Scholar
Brouwers AH, van Eerd JE, Frielink C, Oosterwijk E, Oyen WJ, Corstens FH, et al. Optimization of radioimmunotherapy of renal cell carcinoma: labeling of monoclonal antibody cG250 with 131I, 90Y, 177Lu, or 186Re. J Nucl Med Off Publ Soc Nucl Med. 2004;45(2):327–37.
CAS
Google Scholar
Liu Z, Ma T, Liu H, Jin Z, Sun X, Zhao H, et al. 177Lu-labeled antibodies for EGFR-targeted SPECT/CT imaging and radioimmunotherapy in a preclinical head and neck carcinoma model. Mol Pharm. 2014;11(3):800–7. https://doi.org/10.1021/mp4005047.
CAS
Article
PubMed
Google Scholar
Song IH, Lee TS, Park YS, Lee JS, Lee BC, Moon BS, et al. Immuno-PET Imaging and Radioimmunotherapy of 64Cu-/177Lu-Labeled Anti-EGFR Antibody in Esophageal Squamous Cell Carcinoma Model. J Nucl Med Off Publ Soc Nucl Med. 2016;57(7):1105–11. https://doi.org/10.2967/jnumed.115.167155.
CAS
Article
Google Scholar
Perk LR, Visser GW, Vosjan MJ, Stigter-van Walsum M, Tijink BM, Leemans CR, et al. 89Zr as a PET surrogate radioisotope for scouting biodistribution of the therapeutic radiometals 90Y and 177Lu in tumor-bearing nude mice after coupling to the internalizing antibody cetuximab. J Nucl Med Off Publ Soc Nucl Med. 2005;46(11):1898–906.
CAS
Google Scholar
Harrison A, Walker CA, Parker D, Jankowski KJ, Cox JP, Craig AS, et al. The in vivo release of 90Y from cyclic and acyclic ligand-antibody conjugates. Int J Radiat Appl Instrum Part B Nucl Med Biol. 1991;18(5):469–76.
CAS
Article
Google Scholar
Camera L, Kinuya S, Garmestani K, Wu C, Brechbiel MW, Pai LH, et al. Evaluation of the serum stability and in vivo biodistribution of CHX-DTPA and other ligands for yttrium labeling of monoclonal antibodies. J Nucl Med Off Publ Soc Nucl Med. 1994;35(5):882–9.
CAS
Google Scholar
Smith-Jones PM, Vallabahajosula S, Goldsmith SJ, Navarro V, Hunter CJ, Bastidas D, et al. In vitro characterization of radiolabeled monoclonal antibodies specific for the extracellular domain of prostate-specific membrane antigen. Can Res. 2000;60(18):5237–43.
CAS
Google Scholar
Milenic DE, Garmestani K, Chappell LL, Dadachova E, Yordanov A, Ma D, et al. In vivo comparison of macrocyclic and acyclic ligands for radiolabeling of monoclonal antibodies with 177Lu for radioimmunotherapeutic applications. Nucl Med Biol. 2002;29(4):431–42.
CAS
Article
PubMed
Google Scholar
Bernhard C, Moreau M, Lhenry D, Goze C, Boschetti F, Rousselin Y, et al. DOTAGA-anhydride: a valuable building block for the preparation of DOTA-like chelating agents. Chemistry. 2012;18(25):7834–41. https://doi.org/10.1002/chem.201200132.
CAS
Article
PubMed
Google Scholar
Moreau M, Raguin O, Vrigneaud JM, Collin B, Bernhard C, Tizon X, et al. DOTAGA-trastuzumab. a new antibody conjugate targeting HER2/Neu antigen for diagnostic purposes. Bioconjug Chem. 2012;23(6):1181–8. https://doi.org/10.1021/bc200680x.
CAS
Article
PubMed
Google Scholar
Adams GP, Schier R, McCall AM, Simmons HH, Horak EM, Alpaugh RK, et al. High affinity restricts the localization and tumor penetration of single-chain fv antibody molecules. Can Res. 2001;61(12):4750–5.
CAS
Google Scholar
Lunt SJ, Chaudary N, Hill RP. The tumor microenvironment and metastatic disease. Clin Exp Metas. 2009;26(1):19–34. https://doi.org/10.1007/s10585-008-9182-2.
Article
Google Scholar
Wong KJ, Baidoo KE, Nayak TK, Garmestani K, Brechbiel MW, Milenic DE. In Vitro and In Vivo pre-clinical analysis of a F(ab’)2 fragment of panitumumab for molecular imaging and therapy of HER1 positive cancers. EJNMMI Res. 2011;1(1):1. https://doi.org/10.1186/2191-219x-1-1.
Article
PubMed
PubMed Central
Google Scholar
Ahsan A, Ramanand SG, Whitehead C, Hiniker SM, Rehemtulla A, Pratt WB, et al. Wild-type EGFR is stabilized by direct interaction with HSP90 in cancer cells and tumors. Neoplasia. 2012;14(8):670–7.
CAS
Article
PubMed
PubMed Central
Google Scholar
Zhang F, Wang S, Yin L, Yang Y, Guan Y, Wang W, et al. Quantification of epidermal growth factor receptor expression level and binding kinetics on cell surfaces by surface plasmon resonance imaging. Anal Chem. 2015;87(19):9960–5. https://doi.org/10.1021/acs.analchem.5b02572.
CAS
Article
PubMed
PubMed Central
Google Scholar
Marmol I, Sanchez-de-Diego C, Pradilla Dieste A, Cerrada E, Rodriguez Yoldi MJ. Colorectal carcinoma: a general overview and future perspectives in colorectal cancer. Int J Mol Sci. 2017;18(1):197. https://doi.org/10.3390/ijms18010197.
CAS
Article
PubMed Central
Google Scholar
Curtin JC. Novel drug discovery opportunities for colorectal cancer. Expert Opin Drug Discov. 2013;8(9):1153–64. https://doi.org/10.1517/17460441.2013.807249.
CAS
Article
PubMed
Google Scholar
Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin. 2013;63(1):11–30. https://doi.org/10.3322/caac.21166.
Article
PubMed
Google Scholar
Khelwatty SA, Essapen S, Seddon AM, Modjtahedi H. Prognostic significance and targeting of HER family in colorectal cancer. Front Biosci. 2013;18:394–421.
CAS
Article
Google Scholar
Harding J, Burtness B. Cetuximab: an epidermal growth factor receptor chemeric human-murine monoclonal antibody. Drugs Today. 2005;41(2):107–27. https://doi.org/10.1358/dot.2005.41.2.882662.
CAS
Article
Google Scholar
Sihver W, Pietzsch J, Krause M, Baumann M, Steinbach J, Pietzsch HJ. Radiolabeled cetuximab conjugates for EGFR targeted cancer diagnostics and therapy. Pharmaceuticals. 2014;7(3):311–38. https://doi.org/10.3390/ph7030311.
CAS
Article
PubMed
PubMed Central
Google Scholar
Covell DG, Barbet J, Holton OD, Black CD, Parker RJ, Weinstein JN. Pharmacokinetics of monoclonal immunoglobulin G1, F(ab’)2, and Fab’ in mice. Can Res. 1986;46(8):3969–78.
CAS
Google Scholar
van Dijk LK, Yim CB, Franssen GM, Kaanders JH, Rajander J, Solin O, et al. PET of EGFR with 64Cu-cetuximab-F(ab’)2 in mice with head and neck squamous cell carcinoma xenografts. Contrast Media Mol Imaging. 2016;11(1):65–70. https://doi.org/10.1002/cmmi.1659.
CAS
Article
PubMed
Google Scholar
van Dijk LK, Hoeben BA, Kaanders JH, Franssen GM, Boerman OC, Bussink J. Imaging of epidermal growth factor receptor expression in head and neck cancer with SPECT/CT and 111In-labeled cetuximab-F(ab’)2. J Nucl Med Off Publ Soc Nucl Med. 2013;54(12):2118–24. https://doi.org/10.2967/jnumed.113.123612.
CAS
Article
Google Scholar
Kim DH, Zhou K, Kim DK, Park S, Noh J, Kwon Y, et al. Analysis of interactions between the epidermal growth Factor receptor and soluble ligands on the basis of single-molecule diffusivity in the membrane of living cells. Angew Chem. 2015;54(24):7028–32. https://doi.org/10.1002/anie.201500871.
CAS
Article
Google Scholar
Haeder M, Rotsch M, Bepler G, Hennig C, Havemann K, Heimann B, et al. Epidermal growth factor receptor expression in human lung cancer cell lines. Can Res. 1988;48(5):1132–6.
CAS
Google Scholar
Yoshida H, Mochizuki M, Kainouchi M, Ishida T, Sakata K, Yokoyama S, et al. Clinical application of indium-111 antimyosin antibody and thallium-201 dual nuclide single photon emission computed tomography in acute myocardial infarction. Ann Nucl Med. 1991;5(1):41–6.
CAS
Article
PubMed
Google Scholar
Divgi CR, Welt S, Kris M, Real FX, Yeh SD, Gralla R, et al. Phase I and imaging trial of indium 111-labeled anti-epidermal growth factor receptor monoclonal antibody 225 in patients with squamous cell lung carcinoma. J Natl Cancer Inst. 1991;83(2):97–104.
CAS
Article
PubMed
Google Scholar
Brechbiel MW. Bifunctional chelates for metal nuclides. The Q J Nucl Med Mol Imaging Official Publ Ital Assoc Nucl Med. 2008;52(2):166–73.
CAS
Google Scholar
Weineisen M, Simecek J, Schottelius M, Schwaiger M, Wester HJ. Synthesis and preclinical evaluation of DOTAGA-conjugated PSMA ligands for functional imaging and endoradiotherapy of prostate cancer. EJNMMI Res. 2014;4(1):63. https://doi.org/10.1186/s13550-014-0063-1.
CAS
Article
PubMed
PubMed Central
Google Scholar
Baum RP, Kulkarni HR, Schuchardt C, Singh A, Wirtz M, Wiessalla S, et al. 177Lu-labeled prostate-specific membrane antigen radioligand therapy of metastatic castration-resistant prostate cancer: safety and efficacy. J Nucl Med Off Publ Soc Nucl Med. 2016;57(7):1006–13. https://doi.org/10.2967/jnumed.115.168443.
CAS
Article
Google Scholar
Weineisen M, Schottelius M, Simecek J, Baum RP, Yildiz A, Beykan S, et al. 68Ga- and 177Lu-labeled PSMA I&T: optimization of a PSMA-targeted theranostic concept and first proof-of-concept human studies. J Nucl Med Off Publ Soc Nucl Med. 2015;56(8):1169–76. https://doi.org/10.2967/jnumed.115.158550.
CAS
Article
Google Scholar
Bergsma H, Konijnenberg MW, Kam BL, Teunissen JJ, Kooij PP, de Herder WW, et al. Subacute haematotoxicity after PRRT with 177Lu-DOTA-octreotate: prognostic factors, incidence and course. Eur J Nucl Med Mol Imaging. 2016;43(3):453–63. https://doi.org/10.1007/s00259-015-3193-4.
CAS
Article
PubMed
Google Scholar
Ahmadzadehfar H, Rahbar K, Kurpig S, Bogemann M, Claesener M, Eppard E, et al. Early side effects and first results of radioligand therapy with 177Lu-DKFZ-617 PSMA of castrate-resistant metastatic prostate cancer: a two-centre study. EJNMMI Res. 2015;5(1):114. https://doi.org/10.1186/s13550-015-0114-2.
CAS
Article
PubMed
Google Scholar
van Dijk LK, Boerman OC, Franssen GM, Kaanders JH, Bussink J. 111In-cetuximab-F(ab’)2 SPECT and 18F-FDG PET for prediction and response monitoring of combined-modality treatment of human head and neck carcinomas in a mouse model. J Nucl Med Off Publ Soc Nucl Med. 2015;56(2):287–92. https://doi.org/10.2967/jnumed.114.148296.
CAS
Article
Google Scholar
Spiegelberg D, Mortensen AC, Selvaraju RK, Eriksson O, Stenerlow B, Nestor M. Molecular imaging of EGFR and CD44v6 for prediction and response monitoring of HSP90 inhibition in an in vivo squamous cell carcinoma model. Eur J Nucl Med Mol Imaging. 2016;43(5):974–82. https://doi.org/10.1007/s00259-015-3260-x.
CAS
Article
PubMed
Google Scholar
Borjesson PK, Postema EJ, de Bree R, Roos JC, Leemans CR, Kairemo KJ, et al. Radioimmunodetection and radioimmunotherapy of head and neck cancer. Oral Oncol. 2004;40(8):761–72. https://doi.org/10.1016/j.oraloncology.2003.11.009.
Article
PubMed
Google Scholar
Fischer E, Grunberg J, Cohrs S, Hohn A, Waldner-Knogler K, Jeger S, et al. L1-CAM-targeted antibody therapy and 177Lu-radioimmunotherapy of disseminated ovarian cancer. Int J Cancer. 2012;130(11):2715–21. https://doi.org/10.1002/ijc.26321.
CAS
Article
PubMed
Google Scholar
Tagawa ST, Milowsky MI, Morris M, Vallabhajosula S, Christos P, Akhtar NH, et al. Phase II study of Lutetium-177-labeled anti-prostate-specific membrane antigen monoclonal antibody J591 for metastatic castration-resistant prostate cancer. Clin Cancer Res Off J Am Assoc Cancer Res. 2013;19(18):5182–91. https://doi.org/10.1158/1078-0432.CCR-13-0231.
CAS
Article
Google Scholar
de Cuba EM, Kwakman R, van Egmond M, Bosch LJ, Bonjer HJ, Meijer GA, et al. Understanding molecular mechanisms in peritoneal dissemination of colorectal cancer: future possibilities for personalised treatment by use of biomarkers. Virchows Archiv Int J Pathol. 2012;461(3):231–43. https://doi.org/10.1007/s00428-012-1287-y.
CAS
Article
Google Scholar