Skip to main content

Advertisement

Log in

Heterogeneity of breast cancer: etiology and clinical relevance

  • Educational Series / Blue Series
  • Molecular and Cellular Biology of Cancer
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Cancer progression is a dynamic process of clonal adaptation to changing microenvironments. From the single founder cell until the clinical detection of tumours, there are consecutive clonal expansions and a constant acquisition of genetic and epigenetic alterations, events that contribute to the generation of intra-tumor heterogeneity. In breast cancer intra-tumor heterogeneity can arise from the differentiation of stem-like cells along with the clonal selection during tumor progression, and represents a major challenge for the design of effective therapies. To infer breast cancer progression and its response to particular treatments it is important to understand the origins of the inter- and intra-tumor heterogeneity and the forces that control tumor evolution. Insights about the evolution of breast cancer heterogeneity would contribute to the design of most effective therapeutic strategies to target the tumors at single clon level. This review is intended to give a general overview about the origins of breast cancer heterogeneity and its impact in the clinical management of the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kamangar F, Dores GM, Anderson WF (2006) Patterns of cancer incidence, mortality, and prevalence across five continents: defining priorities to reduce cancer disparities in different geographic regions of the world. J Clin Oncol 24:2137–2150

    Article  PubMed  Google Scholar 

  2. Marusyk A, Polyak K (2010) Tumor heterogeneity: causes and consequences. Biochim Biophys Acta 1805:105–117

    PubMed  CAS  Google Scholar 

  3. Benetkiewicz M, Piotrowski A, Diaz De Stahl T et al (2006) Chromosome 22 array-CGH profiling of breast cancer delimited minimal common regions of genomic imbalances and revealed frequent intra-tumoral genetic heterogeneity. Int J Oncol 29:935–945

    PubMed  CAS  Google Scholar 

  4. Tavassoéli FA, Devilee P (2003) Classification of tumours. World Health Organization, IARC, WHO No 4

  5. Perou CM, Sorlie T, Eisen MB et al (2000) Molecular portraits of human breast tumours. Nature 406:747–752

    Article  PubMed  CAS  Google Scholar 

  6. Sorlie T, Perou CM, Tibshirani R et al (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A 98:10869–10874

    Article  PubMed  CAS  Google Scholar 

  7. Herschkowitz JI, Simin K, Weigman VJ et al (2007) Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors. Genome Biol 8:R76

    Article  PubMed  Google Scholar 

  8. Prat A, Parker JS, Karginova O et al (2010) Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res 12:R68

    Article  PubMed  Google Scholar 

  9. Polyak K, Kalluri R (2010) The role of the microenvironment in mammary gland development and cancer. Cold Spring Harb Perspect Biol 2:a003244

    Article  PubMed  CAS  Google Scholar 

  10. Visvader JE (2009) Keeping abreast of the mammary epithelial hierarchy and breast tumorigenesis. Genes Dev 23:2563–2577

    Article  PubMed  CAS  Google Scholar 

  11. Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414:105–111

    Article  PubMed  CAS  Google Scholar 

  12. Lim E, Vaillant F, Wu D et al (2009) Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers. Nat Med 15:907–913

    Article  PubMed  CAS  Google Scholar 

  13. Polyak K (2007) Breast cancer: origins and evolution. J Clin Invest 117:3155–3163

    Article  PubMed  CAS  Google Scholar 

  14. Visvader JE (2011) Cells of origin in cancer. Nature 469:314–322

    Article  PubMed  CAS  Google Scholar 

  15. Korsching E, Packeisen J, Agelopoulos K et al (2002) Cytogenetic alterations and cytokeratin expression patterns in breast cancer: integrating a new model of breast differentiation into cytogenetic pathways of breast carcinogenesis. Lab Invest 82:1525–1533

    PubMed  CAS  Google Scholar 

  16. Mani SA, Guo W, Liao MJ et al (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133:704–715

    Article  PubMed  CAS  Google Scholar 

  17. Chaffer CL, Brueckmann I, Scheel C et al (2011) Normal and neoplastic nonstem cells can spontaneously convert to a stem-like state. Proc Natl Acad Sci U S A 108:7950–7955

    Article  PubMed  CAS  Google Scholar 

  18. Broeks A, Schmidt MK, Sherman ME et al (2011) Low penetrance breast cancer susceptibility loci are associated with specific breast tumor subtypes: findings from the Breast Cancer Association Consortium. Hum Mol Genet 20:3289–3303

    Article  PubMed  Google Scholar 

  19. Welcsh PL, King MC (2001) BRCA1 and BRCA2 and the genetics of breast and ovarian cancer. Hum Mol Genet 10:705–713

    Article  PubMed  CAS  Google Scholar 

  20. Liu S, Ginestier C, Charafe-Jauffret E et al (2008) BRCA1 regulates human mammary stem/progenitor cell fate. Proc Natl Acad Sci U S A 105:1680–1685

    Article  PubMed  CAS  Google Scholar 

  21. Turner N, Tutt A, Ashworth A (2004) Hallmarks of’ BRCAness’ in sporadic cancers. Nat Rev Cancer 4:814–819

    Article  PubMed  CAS  Google Scholar 

  22. Sorlie T, Tibshirani R, Parker J et al (2003) Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci U S A 100:8418–8423

    Article  PubMed  CAS  Google Scholar 

  23. Palacios J, Honrado E, Osorio A et al (2005) Phenotypic characterization of BRCA1 and BRCA2 tumors based in a tissue microarray study with 37 immunohistochemical markers. Breast Cancer Res Treat 90:5–14

    Article  PubMed  CAS  Google Scholar 

  24. Foulkes WD, Brunet JS, Stefansson IM et al (2004) The prognostic implication of the basal-like (cyclin E high/p27 low/p53+/glomeruloid-microvascular-proliferation+) phenotype of BRCA1-related breast cancer. Cancer Res 64:830–835

    Article  PubMed  CAS  Google Scholar 

  25. Molyneux G, Geyer FC, Magnay FA et al (2010) BRCA1 basal-like breast cancers originate from luminal epithelial progenitors and not from basal stem cells. Cell Stem Cell 7:403–417

    Article  PubMed  CAS  Google Scholar 

  26. Proia TA, Keller PJ, Gupta PB et al (2011) Genetic predisposition directs breast cancer phenotype by dictating progenitor cell fate. Cell Stem Cell 8:149–163

    Article  PubMed  CAS  Google Scholar 

  27. Michor F, Polyak K (2010) The origins and implications of intratumor heterogeneity. Cancer Prev Res (Phila) 3:1361–1364

    Article  Google Scholar 

  28. Cohnheim V (1875) Congenitales, quergestreiftes muskelsarkom der nieren. Virchows Arch Pathol Anat Physiol Klin Med 65:64–69

    Article  Google Scholar 

  29. Makino S (1956) Further evidence favoring the concept of the stem cell in ascites tumors of rats. Ann N Y Acad Sci 63:818–830

    Article  PubMed  CAS  Google Scholar 

  30. Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3:730–737

    Article  PubMed  CAS  Google Scholar 

  31. Al-Hajj M, Wicha MS, Benito-Hernandez A et al (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 100:3983–3988

    Article  PubMed  CAS  Google Scholar 

  32. Pece S, Tosoni D, Confalonieri S et al (2010) Biological and molecular heterogeneity of breast cancers correlates with their cancer stem cell content. Cell 140:62–73

    Article  PubMed  CAS  Google Scholar 

  33. Villadsen R, Fridriksdottir AJ, Ronnov-Jessen L et al (2007) Evidence for a stem cell hierarchy in the adult human breast. J Cell Biol 177:87–101

    Article  PubMed  CAS  Google Scholar 

  34. Clayton H, Titley I, Vivanco M (2004) Growth and differentiation of progenitor/stem cells derived from the human mammary gland. Exp Cell Res 297:444–460

    Article  PubMed  CAS  Google Scholar 

  35. Meyer MJ, Fleming JM, Lin AF et al (2010) CD44posCD49fhiCD133/2hi defines xenograft-initiating cells in estrogen receptor-negative breast cancer. Cancer Res 70:4624–4633

    Article  PubMed  CAS  Google Scholar 

  36. Ginestier C, Hur MH, Charafe-Jauffret E et al (2007) ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1:555–567

    Article  PubMed  CAS  Google Scholar 

  37. Shipitsin M, Campbell LL, Argani P et al (2007) Molecular definition of breast tumor heterogeneity. Cancer Cell 11:259–273

    Article  PubMed  CAS  Google Scholar 

  38. Quintana E, Shackleton M, Sabel MS et al (2008) Efficient tumour formation by single human melanoma cells. Nature 456:593–598

    Article  PubMed  CAS  Google Scholar 

  39. Iliopoulos D, Hirsch HA, Wang G, Struhl K (2011) Inducible formation of breast cancer stem cells and their dynamic equilibrium with non-stem cancer cells via IL6 secretion. Proc Natl Acad Sci U S A 108:1397–1402

    Article  PubMed  CAS  Google Scholar 

  40. Marotta LL, Almendro V, Marusyk A et al (2011) The JAK2/STAT3 signaling pathway is required for growth of CD44CD24 stem cell-like breast cancer cells in human tumors. J Clin Invest 121:2723–2735

    Article  PubMed  CAS  Google Scholar 

  41. Louie E, Nik S, Chen JS et al (2010) Identification of a stem-like cell population by exposing metastatic breast cancer cell lines to repetitive cycles of hypoxia and reoxygenation. Breast Cancer Res 12:R94

    Article  PubMed  CAS  Google Scholar 

  42. Mathieu J, Zhang Z, Zhou W et al (2011) HIF induces human embryonic stem cell markers in cancer cells. Cancer Res 71:4640–4652

    Article  PubMed  CAS  Google Scholar 

  43. Park SY, Lee HE, Li H et al (2010) Heterogeneity for stem cell-related markers according to tumor subtype and histologic stage in breast cancer. Clin Cancer Res 16:876–887

    Article  PubMed  CAS  Google Scholar 

  44. Honeth G, Bendahl PO, Ringner M et al (2008) The CD44+/CD24-phenotype is enriched in basal-like breast tumors. Breast Cancer Res 10:R53

    Article  PubMed  Google Scholar 

  45. Pece S, Tosoni D, Confalonieri S et al (2010) Biological and molecular heterogeneity of breast cancers correlates with their cancer stem cell content. Cell 140:62–73

    Article  PubMed  CAS  Google Scholar 

  46. Merlo LM, Pepper JW, Reid BJ, Maley CC (2006) Cancer as an evolutionary and ecological process. Nat Rev Cancer 6:924–935

    Article  PubMed  CAS  Google Scholar 

  47. Hu M, Yao J, Carroll DK et al (2008) Regulation of in situ to invasive breast carcinoma transition. Cancer Cell 13:394–406

    Article  PubMed  CAS  Google Scholar 

  48. Hu M, Polyak K (2008) Molecular characterisation of the tumour microenvironment in breast cancer. Eur J Cancer 44:2760–2765

    Article  PubMed  CAS  Google Scholar 

  49. Karnoub AE, Dash AB, Vo AP et al (2007) Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449:557–563

    Article  PubMed  CAS  Google Scholar 

  50. Scheel C, Eaton EN, Li SH et al (2011) Paracrine and autocrine signals induce and maintain mesenchymal and stem cell states in the breast. Cell 145:926–940

    Article  PubMed  CAS  Google Scholar 

  51. Hanna W, Nofech-Mozes S, Kahn HJ (2007) Intratumoral heterogeneity of HER2/neu in breast cancer: a rare event. Breast J 13:122–129

    Article  PubMed  CAS  Google Scholar 

  52. Brunelli M, Manfrin E, Martignoni G et al (2009) Genotypic intratumoral heterogeneity in breast carcinoma with HER2/neu amplification: evaluation according to ASCO/CAP criteria. Am J Clin Pathol 131:678–682

    Article  PubMed  Google Scholar 

  53. Cottu PH, Asselah J, Lae M et al (2008) Intratumoral heterogeneity of HER2/neu expression and its consequences for the management of advanced breast cancer. Ann Oncol 19:595–597

    Article  PubMed  CAS  Google Scholar 

  54. Kalinsky K, Heguy A, Bhanot UK et al (2011) PIK3CA mutations rarely demonstrate genotypic intratumoral heterogeneity and are selected for in breast cancer progression. Breast Cancer Res Treat 129:635–643

    Article  PubMed  Google Scholar 

  55. Gerlinger M, Swanton C (2010) How Darwinian models inform therapeutic failure initiated by clonal heterogeneity in cancer medicine. Br J Cancer 103:1139–1143

    Article  PubMed  CAS  Google Scholar 

  56. Creighton CJ, Li X, Landis M et al (2009) Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features. Proc Natl Acad Sci U S A 106:13820–13825

    Article  PubMed  CAS  Google Scholar 

  57. Lee HE, Kim JH, Kim YJ et al (2011) An increase in cancer stem cell population after primary systemic therapy is a poor prognostic factor in breast cancer. Br J Cancer 104:1730–1738

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vanessa Almendro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Almendro, V., Fuster, G. Heterogeneity of breast cancer: etiology and clinical relevance. Clin Transl Oncol 13, 767–773 (2011). https://doi.org/10.1007/s12094-011-0731-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-011-0731-9

Keywords

Navigation