Skip to main content

Advertisement

Log in

Molecular biology of thyroid cancer initiation

  • Educational Series
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Thyroid cancers stand out among solid tumours because many of the tumour-initiating genetic events have been identified. Mutations leading to constitutive activation of MAP kinase effectors-the tyrosine receptor kinase RET and the intracellular signalling effectors RAS and BRAF-are essential for the pathogenesis of papillary thyroid carcinoma (PTC). Similarly, there is increasing evidence demonstrating that mutations leading to activation of the phosphatidylinositol 3-kinase (PI3K)/AKT effectors-PTEN and PI3KCa-are essential for the pathogenesis of follicular thyroid carcinoma (FTC). Besides this strong relationship between the histological phenotype and the pathway predominantly activated, the nature of the genetic event seems to determine the biological behaviour of the tumour and the ultimate clinical outcome of the patient. In this review we will summarise and discuss the main genetic events related to thyroid cancer initiation, the contribution of genomics and the convenience of using a new molecular classification of thyroid cancer, complementary to the clinicopathological classification. This may help us to predict more faithfully the clinical outcome of patients with thyroid cancer and to select more appropriately candidates for targeted therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schlumberger MJ, Filetti S, Hay ID (2003) Nontoxic goiter and thyroid neoplasia. In: Larsen PR, Kronenberg HM, Melmed S et al (eds) Williams textbook of endocrinology, 13th Edn. Saunders, Philadelphia, pp 457–491

    Google Scholar 

  2. AJCC (2002) Thyroid. In Greene FL, Page DL, Fleming ID et al (eds) AJCC Cancer Staging Handbook, 6th Edn, Springer, New York, pp 89–98

    Google Scholar 

  3. Schlumberger M, Pacini F (2003) Tumeurs de la thyroïde. Editions Nucléon. Paris

  4. Xing M (2005) BRAF mutation in thyroid cancer. Endocr Relat Cancer 12:245–262

    Article  PubMed  CAS  Google Scholar 

  5. Nikiforova MN, Kimura ET, Gandhi M et al (2003) BRAF mutations in thyroid tumours are restricted to papillary carcinomas and anaplastic or poorly differentiated carcinomas arising from papillary carcinomas. J Clin Endocrinol Metab 88:5399–5404

    Article  PubMed  CAS  Google Scholar 

  6. Begum S, Rosenbaum E, Henrique R et al (2004) BRAF mutations in anaplastic thyroid carcinoma: implications for tumour origin, diagnosis and treatment. Mod Pathol 17:1359–1363

    Article  PubMed  CAS  Google Scholar 

  7. Namba H, Nakashima M, Hayashi T et al (2003) Clinical implication of hot spot BRAF mutation, V599E, in papillary thyroid cancers. J Clin Endocrinol Metab 88:4393–4397

    Article  PubMed  CAS  Google Scholar 

  8. Quiros RM, Ding HG, Gattuso P et al (2005) Evidence that one subset of anaplastic thyroid carcinomas are derived from papillary carcinomas due to BRAF and p53 mutations. Cancer 103:2261–2268

    Article  PubMed  CAS  Google Scholar 

  9. Soares P, Trovisco V, Rocha AS et al (2004) BRAF mutations typical of papillary thyroid carcinoma are more frequently detected in undifferentiated than in insular and insular-like poorly differentiated carcinomas. Virchows Arch 444:572–576

    Article  PubMed  Google Scholar 

  10. Xing M, Vasko V, Tallini G et al (2004) BRAF T1796A transversion mutation in various thyroid neoplasms. J Clin Endocrinol Metab 89:1365–1368

    Article  PubMed  CAS  Google Scholar 

  11. Knauf JA, Ma X, Smith EP et al (2005) Targeted expression of BRAFV600E in thyroid cells of transgenic mice results in papillary thyroid cancers that undergo dedifferentiation. Cancer Res 65:4238–4245

    Article  PubMed  CAS  Google Scholar 

  12. Cohen Y, Rosenbaum E, Clark DP et al (2004) Mutational analysis of BRAF in fine needle aspiration biopsies of the thyroid: a potential application for the preoperative assessment of thyroid nodules. Clin Cancer Res 10:2761–2765

    Article  PubMed  CAS  Google Scholar 

  13. Xing M, Tufano RP, Tufaro AP et al (2004) Detection of BRAF mutation on fine needle aspiration biopsy specimens: a new diagnostic tool for papillary thyroid cancer. J Clin Endocrinol Metab 89:2867–2872

    Article  PubMed  CAS  Google Scholar 

  14. Riesco-Eizaguirre G, Gutiérrez-Martínez P, García-Cabezas MA et al (2006) The oncogene BRAF V600E is associated with a high risk of recurrence and less differentiated papillary thyroid carcinoma due to the impairment of Na+/I-targeting to the membrane. Endocr Relat Cancer 13:257–269

    Article  PubMed  CAS  Google Scholar 

  15. Xing M, Westra WH, Tufano RP et al (2005) BRAF mutation predicts a poorer clinical prognosis for papillary thyroid cancer. J Clin Endocrinol Metab 90:6373–6379

    Article  PubMed  CAS  Google Scholar 

  16. Klugbauer S, Lengfelder E, Demidchik EP, Rabes HM (1995) High prevalence of RET rearrangement in thyroid tumours of children from Belarus after the Chernobyl reactor accident. Oncogene 11:2459–2467

    PubMed  CAS  Google Scholar 

  17. Fugazzola L, Pilotti S, Pinchera A et al (1995) Oncogenic rearrangements of the RET proto-oncogene in papillary thyroid carcinomas from children exposed to the Chernobyl nuclear accident. Cancer Res 55:5617–5620

    PubMed  CAS  Google Scholar 

  18. Nikiforov YE, Rowland JM, Bove KE et al (1997) Distinct pattern of ret oncogene rearrangements in morphological variants of radiation-induced and sporadic thyroid papillary carcinomas in children. Cancer Res 57:1690–1694

    PubMed  CAS  Google Scholar 

  19. Santoro M, Carlomagno F, Hay ID et al (1992) Ret oncogene activation in human thyroid neoplasms is restricted to the papillary cancer subtype. J Clin Invest 89:1517–1522

    PubMed  CAS  Google Scholar 

  20. Bounacer A, Wicker R, Caillou B et al (1997) High prevalence of activating ret proto-oncogene rearrangements, in thyroid tumours from patients who had received external radiation. Oncogene 15:1263–1273

    Article  PubMed  CAS  Google Scholar 

  21. Bongarzone I, Fugazzola L, Vigneri P et al (1996) Age-related activation of the tyrosine kinase receptor protooncogenes RET and NTRK1 in papillary thyroid carcinoma. J Clin Endocrinol Metab 81:2006–2009

    Article  PubMed  CAS  Google Scholar 

  22. Ito T, Seyama T, Iwamoto KS et al (1994) Activated RET oncogene in thyroid cancers of children from areas contaminated by Chernobyl accident. Lancet 344:259

    PubMed  CAS  Google Scholar 

  23. Elisei R, Romei C, Vorontsova T et al (2001) RET/PTC rearrangements in thyroid nodules: studies in irradiated and not irradiated, malignant and benign thyroid lesions in children and adults. J Clin Endocrinol Metab 86:3211–3216

    Article  PubMed  CAS  Google Scholar 

  24. Ishizaka Y, Kobayashi S, Ushijima T et al (1991) Detection of retTPC/PTC transcripts in thyroid adenomas and adenomatous goiter by an RTPCR method. Oncogene 6:1667–1672

    PubMed  CAS  Google Scholar 

  25. Nikiforova MN, Caudill CM, Biddinger P, Nikiforov YE (2002) Prevalence of RET/PTC rearrangements in Hashimoto’s thyroiditis and papillary thyroid carcinomas. Int J Surg Pathol 10:15–22

    Article  PubMed  CAS  Google Scholar 

  26. Nikiforov YE (2002) RET/PTC rearrangement in thyroid tumours. Endocr Pathol 13:3–16

    Article  PubMed  CAS  Google Scholar 

  27. Zhu Z, Ciampi R, Nikiforova MN et al (2006) Prevalence of RET/PTC rearrangements in thyroid papillary carcinomas: effects of the detection methods and genetic heterogeneity. J Clin Endocrinol Metab 91:3603–3610

    Article  PubMed  CAS  Google Scholar 

  28. Jhiang SM, Sagartz JE, Tong Q et al (1996) Targeted expression of the ret/PTC1 oncogene induces papillary thyroid carcinomas. Endocrinology 137:375–378

    Article  PubMed  CAS  Google Scholar 

  29. Santoro M, Chiappetta G, Cerrato A et al (1996) Development of thyroid papillary carcinomas secondary to tissue-specific expression of the RET/PTC1 oncogene in transgenic mice. Oncogene 12:1821–1826

    PubMed  CAS  Google Scholar 

  30. Powell DJ Jr, Russell J, Nibu K et al (1998) The RET/PTC3 oncogene: metastatic solid-type papillary carcinomas in murine thyroids. Cancer Res 58:5523–5528

    PubMed  CAS  Google Scholar 

  31. Ito T, Seyama T, Iwamoto KS et al (1993) In vitro irradiation is able to cause RET oncogene rearrangement. Cancer Res 53:2940–2943

    PubMed  CAS  Google Scholar 

  32. Carlomagno F, Vitagliano D, Guida T et al (2002) ZD6474, an orally available inhibitor of KDR tyrosine kinase activity, efficiently blocks oncogenic RET kinases. Cancer Res 62:7284–7290

    PubMed  CAS  Google Scholar 

  33. Carlomagno F, Vitagliano D, Guida T et al (2003) Efficient inhibition of RET/papillary thyroid carcinoma oncogenic kinases by 4-amino-5-(4-chloro-phenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2). J Clin Endocrinol Metab 88:1897–1902

    Article  PubMed  CAS  Google Scholar 

  34. Lanzi C, Cassinelli G, Cuccuru G et al (2003) Inactivation of Ret/Ptc1 oncoprotein and inhibition of papillary thyroid carcinoma cell proliferation by indolinone RPI-1. Cell Mol Life Sci 60: 1449–1459

    Article  PubMed  CAS  Google Scholar 

  35. Strock CJ, Park JI, Rosen M et al (2003) CEP-701 and CEP-751 inhibit constitutively activated RET tyrosine kinase activity and block medullary thyroid carcinoma cell growth. Cancer Res 63:5559–5563

    PubMed  CAS  Google Scholar 

  36. Challeton C, Bounacer A, Du Villard JA et al (1995) Pattern of ras and gsp oncogene mutations in radiation-associated human thyroid tumours. Oncogene 11:601–603

    PubMed  CAS  Google Scholar 

  37. Suarez HG, du Villard JA, Severino M et al (1990) Presence of mutations in all three ras genes in human thyroid tumours. Oncogene 5: 565–570

    PubMed  CAS  Google Scholar 

  38. Wright PA, Lemoine NR, Mayall ES et al (1989) Papillary and follicular thyroid carcinomas show a different pattern of ras oncogene mutation. Br J Cancer 60:576–577

    PubMed  CAS  Google Scholar 

  39. García-Rostan G, Zhao H, Camp RL et al (2003) ras mutations are associated with aggressive tumour phenotypes and poor prognosis in thyroid cancer. J Clin Oncol 21:3226–3235

    Article  PubMed  CAS  Google Scholar 

  40. Lemoine NR, Mayall ES, Wyllie FS et al (1988) Activated ras oncogenes in human thyroid cancers. Cancer Res 48:4459–4463

    PubMed  CAS  Google Scholar 

  41. Namba H, Rubin SA, Fagin JA (1990) Point mutations of ras oncogenes are an early event in thyroid tumorigenesis. Mol Endocrinol 4:1474–1479

    Article  PubMed  CAS  Google Scholar 

  42. Vitagliano D, Portella G, Troncone G et al (2006) Thyroid targeting of the N-ras(Gln61Lys) oncogene in transgenic mice results in follicular tumours that progress to poorly differentiated carcinomas. Oncogene 25:5467–5474

    Article  PubMed  CAS  Google Scholar 

  43. Eng C (1998) Genetics of Cowden syndrome: through the looking glass of oncology. Int J Oncol 12:701–710

    PubMed  CAS  Google Scholar 

  44. Halachmi N, Halachmi S, Evron E et al (1998) Somatic mutations of the PTEN tumour suppressor gene in sporadic follicular thyroid tumours. Genes Chromosomes Cancer 23:239–243

    Article  PubMed  CAS  Google Scholar 

  45. Bruni P, Boccia A, Baldassarre G et al (2000) PTEN expression is reduced in a subset of sporadic thyroid carcinomas: evidence that PTEN-growth suppressing activity in thyroid cancer cells mediated by p27kip1. Oncogene 19:3146–3155

    Article  PubMed  CAS  Google Scholar 

  46. Gimm O, Perren A, Weng LP et al (2000) Differential nuclear and cytoplasmic expression of PTEN in normal thyroid tissue, and benign and malignant epithelial thyroid tumours. Am J Pathol 156:1693–1700

    PubMed  CAS  Google Scholar 

  47. Vasko V, Saji M, Hardy E et al (2004) Akt activation and localisation correlate with tumour invasion and oncogene expression in thyroid cancer. J Med Genet 41:161–170

    Article  PubMed  CAS  Google Scholar 

  48. Ringel MD, Hayre N, Saito J et al (2001) Overexpression and overactivation of Akt in thyroid carcinoma. Cancer Res 61:6105–6111

    PubMed  CAS  Google Scholar 

  49. Yeager N, Klein-Szanto A, Kimura S, Di Cristofano A (2007) Pten loss in the mouse thyroid causes goiter and follicular adenomas: insights into thyroid function and Cowden disease pathogenesis. Cancer Res 67:959–966

    Article  PubMed  CAS  Google Scholar 

  50. García-Rostan G, Costa AM, Pereira-Castro I et al (2005) Mutation of the PIK3CA gene in anaplastic thyroid cancer. Cancer Res 65:10199–10207

    Article  PubMed  Google Scholar 

  51. Wu G, Mambo E, Guo Z et al (2005) Uncommon mutation, but common amplifications, of the PIK3CA gene in thyroid tumours. J Clin Endocrinol Metab 90:4688–4693

    Article  PubMed  CAS  Google Scholar 

  52. Wang Y, Hou P, Yu H et al (2007) High prevalence and mutual exclusivity of genetic alterations in the phosphatidylinositol-3-kinase/akt pathway in thyroid tumours. J Clin Endocrinol Metab 92:2387–2390

    Article  PubMed  CAS  Google Scholar 

  53. Hou P, Liu D, Shan Y et al (2007) Genetic alterations and their relationship in the phosphatidylinositol 3-kinase/Akt pathway in thyroid cancer. Clin Cancer Res 13:1161–1170

    Article  PubMed  CAS  Google Scholar 

  54. Osaki M, Oshimura M, Ito H (2004) PI3K-Akt pathway: its functions and alterations in human cancer. Apoptosis 9:667–676

    Article  PubMed  CAS  Google Scholar 

  55. Kroll TG, Sarraf P, Pecciarini L et al (2000) PAX8-PPARgamma1 fusion oncogene in human thyroid carcinoma [corrected]. Science 289: 1357–1360

    Article  PubMed  CAS  Google Scholar 

  56. Marques AR, Espadinha C, Catarino AL et al (2002) Expression of PAX8-PPAR gamma 1 rearrangements in both follicular thyroid carcinomas and adenomas. J Clin Endocrinol Metab 87:3947–3952

    Article  PubMed  CAS  Google Scholar 

  57. Castro P, Rebocho AP, Soares RJ et al (2006) PAX8-PPARgamma rearrangement is frequently detected in the follicular variant of papillary thyroid carcinoma. J Clin Endocrinol Metab 91: 213–220

    Article  PubMed  CAS  Google Scholar 

  58. French CA, Alexander EK, Cibas ES et al (2003) Genetic and biological subgroups of low-stage follicular thyroid cancer. Am J Pathol 162: 1053–1060

    PubMed  CAS  Google Scholar 

  59. Nikiforova MN, Biddinger PW, Caudill CM et al (2002) PAX8-PPARgamma rearrangement in thyroid tumours: RT-PCR and immunohistochemical analyses. Am J Surg Pathol 26:1016–1023

    Article  PubMed  Google Scholar 

  60. Nikiforova MN, Lynch RA, Biddinger PW et al (2003) RAS point mutations and PAX8-PPAR gamma rearrangement in thyroid tumours: evidence for distinct molecular pathways in thyroid follicular carcinoma. J Clin Endocrinol Metab 88:2318–2326

    Article  PubMed  CAS  Google Scholar 

  61. Martelli ML, Iuliano R, Le Pera I et al (2002) Inhibitory effects of peroxisome poliferator-activated receptor gamma on thyroid carcinoma cell growth. J Clin Endocrinol Metab 87:4728–4735

    Article  PubMed  CAS  Google Scholar 

  62. Au AY, McBride C, Wilhelm KG Jr et al (2006) PAX8-peroxisome proliferator-activated receptor gamma (PPARgamma) disrupts normal PAX8 or PPARgamma transcriptional function and stimulates follicular thyroid cell growth. Endocrinology 147:367–376

    Article  PubMed  CAS  Google Scholar 

  63. Ito T, Seyama T, Mizuno T et al (1992) Unique association of p53 mutations with undifferentiated but not with differentiated carcinomas of the thyroid gland. Cancer Res 52:1369–1371

    PubMed  CAS  Google Scholar 

  64. Fagin JA, Matsuo K, Karmakar A et al (1993) High prevalence of mutations of the p53 gene in poorly differentiated human thyroid carcinomas. J Clin Invest 91:179–184

    PubMed  CAS  Google Scholar 

  65. Battista S, Martelli ML, Fedele M et al (1995) A mutated p53 gene alters thyroid cell differentiation. Oncogene 11:2029–2037

    PubMed  CAS  Google Scholar 

  66. Fagin JA, Tang SH, Zeki K et al (1996) Reexpression of thyroid peroxidase in a derivative of an undifferentiated thyroid carcinoma cell line by introduction of wild-type p53. Cancer Res 56:765–771

    PubMed  CAS  Google Scholar 

  67. Moretti F, Farsetti A, Soddu S et al (1997) p53 re-expression inhibits proliferation and restores differentiation of human thyroid anaplastic carcinoma cells. Oncogene 14:729–740

    Article  PubMed  CAS  Google Scholar 

  68. Medina DL, Santisteban P (2000) Thyrotropin-dependent proliferation of in vitro rat thyroid cell systems. Eur J Endocrinol 143:161–178

    Article  PubMed  CAS  Google Scholar 

  69. Kimura T, Van Keymeulen A, Golstein J et al (2001) Regulation of thyroid cell proliferation by TSH and other factors: a critical evaluation of in vitro models. Endocr Rev 22:631–656

    Article  PubMed  CAS  Google Scholar 

  70. Parma J, Duprez L, Van Sande J et al (1993) Somatic mutations in the thyrotropin receptor gene cause hyperfunctioning thyroid adenomas. Nature 365:649–651

    Article  PubMed  CAS  Google Scholar 

  71. Parma J, Van Sande J, Swillens S et al (1995) Somatic mutations causing constitutive activity of the thyrotropin receptor are the major cause of hyperfunctioning thyroid adenomas: identification of additional mutations activating both the cyclic adenosine 3′,5′-monophosphate and inositol phosphate-Ca2+ cascades. Mol Endocrinol 9:725–733

    Article  PubMed  CAS  Google Scholar 

  72. Porcellini A, Ciullo I, Laviola L et al (1994) Novel mutations of thyrotropin receptor gene in thyroid hyperfunctioning adenomas. Rapid identification by fine needle aspiration biopsy. J Clin Endocrinol Metab 79:657–661

    Article  PubMed  CAS  Google Scholar 

  73. O’sullivan C, Barton CM, Staddon SL et al (1991) Activating point mutations of the gsp oncogene in human thyroid adenomas. Mol Carcinog 4:345–349

    Article  PubMed  CAS  Google Scholar 

  74. Lyons J, Landis CA, Harsh G et al (1990) Two G protein oncogenes in human endocrine tumours. Science 249:655–659

    Article  PubMed  CAS  Google Scholar 

  75. Melillo RM, Castellone MD, Guarino V et al (2005) The RET/PTC-RAS-BRAF linear signalling cascade mediates the motile and mitogenic phenotype of thyroid cancer cells. J Clin Invest 115:1068–1081

    Article  PubMed  CAS  Google Scholar 

  76. Finley DJ, Arora N, Zhu B et al (2004) Molecular profiling distinguishes papillary carcinoma from benign thyroid nodules. J Clin Endocrinol Metab 89:3214–3223

    Article  PubMed  CAS  Google Scholar 

  77. Jarzab B, Gubala E, Lange D (2005) [DNA microarrays and papillary thyroid carcinoma gene expression profile]. Endokrynol Pol 56:293–301

    PubMed  Google Scholar 

  78. Huang Y, Prasad M, Lemon WJ et al (2001) Gene expression in papillary thyroid carcinoma reveals highly consistent profiles. Proc Natl Acad Sci U S A 98:15044–15049

    Article  PubMed  CAS  Google Scholar 

  79. Wasenius VM, Hemmer S, Kettunen E et al (2003) Hepatocyte growth factor receptor, matrix metalloproteinase-11, tissue inhibitor of metalloproteinase-1, and fibronectin are up-regulated in papillary thyroid carcinoma: a cDNA and tissue microarray study. Clin Cancer Res 9:68–75

    PubMed  CAS  Google Scholar 

  80. Giordano TJ, Kuick R, Thomas DG et al (2005) Molecular classification of papillary thyroid carcinoma: distinct BRAF, RAS, and RET/PTC mutation-specific gene expression profiles discovered by DNA microarray analysis. Oncogene 24:6646–6656

    Article  PubMed  CAS  Google Scholar 

  81. Mesa C Jr, Mirza M, Mitsutake N et al (2006) Conditional activation of RET/PTC3 and BRAFV600E in thyroid cells is associated with gene expression profiles that predict a preferential role of BRAF in extracellular matrix remodeling. Cancer Res 66:6521–6529

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Santisteban.

Additional information

Supported by an unrestricted educational grant from Sanofi-Aventis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riesco-Eizaguirre, G., Santisteban, P. Molecular biology of thyroid cancer initiation. Clin Transl Oncol 9, 686–693 (2007). https://doi.org/10.1007/s12094-007-0125-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-007-0125-1

Key words

Navigation