Skip to main content

Abstract

Thyroid cancer is the most common type of endocrine malignancy. Initiation and progression of thyroid cancer involves multiple genetic and epigenetic alterations, of which mutations leading to the activation of the MAPK and PI3K/PTEN/AKT signaling pathways are crucial for tumor initiation and progression. Common mutations found in thyroid cancer are point mutations of the BRAF and RAS genes, as well as RET/PTC and PAX8/PPARG chromosomal rearrangements. More recently, a number of other mutations have been characterized, which occur in this cancer type with significantly lower frequency, but are associated with specific phenotypic and biological properties. These somatic mutations are useful diagnostic and prognostic markers for thyroid cancer and are being incorporated into clinical practice, offering a valuable tool for management of patients with thyroid nodules and cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Davies L, Welch HG. Increasing incidence of thyroid cancer in the United States, 1973–2002. JAMA. 2006;295:2164–7.

    Article  CAS  PubMed  Google Scholar 

  2. Albores-Saavedra J, Henson DE, Glazer E, et al. Changing patterns in the incidence and survival of thyroid cancer with follicular phenotype–papillary, follicular, and anaplastic: a morphological and epidemiological study. Endocr Pathol. 2007;18:1–7.

    Article  PubMed  Google Scholar 

  3. DeLellis RA, Lloyd RV, Heitz PU, et al., editors. World Health Organization classification of tumours. Pathology and genetics of tumours of endocrine organs. Lyon: IARC Press; 2004.

    Google Scholar 

  4. Nikiforov YE. Thyroid tumors: Classification and general considerations. In: Nikiforov YE, Biddinger PW, Thompson LDR, editors. Diagnostic pathology and molecular genetics of the thyroid. Baltimore, MD: Lippincott Williams & Wilkins; 2009. p. 94–102.

    Google Scholar 

  5. Mazzaferri EL. Thyroid cancer in thyroid nodules: finding a needle in the haystack. Am J Med. 1992;93:359–62.

    Article  CAS  PubMed  Google Scholar 

  6. Gharib H. Changing trends in thyroid practice: understanding nodular thyroid disease. Endocr Pract. 2004;10:31–9.

    Article  PubMed  Google Scholar 

  7. Frates MC, Benson CB, Doubilet PM, et al. Prevalence and distribution of carcinoma in patients with solitary and multiple thyroid nodules on sonography. J Clin Endocrinol Metab. 2006;91:3411–7.

    Article  CAS  PubMed  Google Scholar 

  8. Cooper DS, Doherty GM, Haugen BR, et al. Management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid. 2006;16:109–42.

    Article  PubMed  Google Scholar 

  9. Papini E, Guglielmi R, Bianchini A, et al. Risk of malignancy in nonpalpable thyroid nodules: predictive value of ultrasound and color-Doppler features. J Clin Endocrinol Metab. 2002;87:1941–6.

    Article  CAS  PubMed  Google Scholar 

  10. Sclabas GM, Staerkel GA, Shapiro SE, et al. Fine-needle aspiration of the thyroid and correlation with histopathology in a contemporary series of 240 patients. Am J Surg. 2003;186:702–9. discussion 709–10.

    Article  PubMed  Google Scholar 

  11. Yassa L, Cibas ES, Benson CB, et al. Long-term assessment of a multidisciplinary approach to thyroid nodule diagnostic evaluation. Cancer. 2007;111:508–16.

    Article  PubMed  Google Scholar 

  12. Baloch ZW, LiVolsi VA, Asa SL, et al. Diagnostic terminology and morphologic criteria for cytologic diagnosis of thyroid lesions: a synopsis of the National Cancer Institute Thyroid Fine-Needle Aspiration State of the Science Conference. Diagn Cytopathol. 2008;36:425–37.

    Article  PubMed  Google Scholar 

  13. Ali SZ, Cibas ES. The Bethesda system for reporting thyroid cytopathology. New York, NY: Springer; 2010.

    Book  Google Scholar 

  14. Xing M, Clark D, Guan H, et al. BRAF mutation testing of thyroid fine-needle aspiration biopsy specimens for preoperative risk stratification in papillary thyroid cancer. J Clin Oncol. 2009;27:2977–82. doi:10.1200/JCO.2008.20.1426.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Elisei R, Ugolini C, Viola D, et al. BRAF(V600E) mutation and outcome of patients with papillary thyroid carcinoma: a 15-year median follow-up study. J Clin Endocrinol Metab. 2008;93:3943–9.

    Article  CAS  PubMed  Google Scholar 

  16. Yip L, Nikiforova MN, Carty SE, et al. Optimizing surgical treatment of papillary thyroid carcinoma associated with BRAF mutation. Surgery. 2009;146:1215–23.

    Article  PubMed  Google Scholar 

  17. Nikiforov YE. Thyroid tumors: classification, staging and general considerations. In: Nikiforov Y, Biddinger PW, THompson LDR, editors. Diagnostic pathology and molecular genetics of the thyroid. Baltimore, MD: Lippincott Williams & Wilkins; 2012. p. 108–18.

    Google Scholar 

  18. Adeniran AJ, Zhu Z, Gandhi M, et al. Correlation between genetic alterations and microscopic features, clinical manifestations, and prognostic characteristics of thyroid papillary carcinomas. Am J Surg Pathol. 2006;30:216–22.

    Article  PubMed  Google Scholar 

  19. Kimura ET, Nikiforova MN, Zhu Z, et al. High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma. Cancer Res. 2003;63:1454–7.

    CAS  PubMed  Google Scholar 

  20. Soares P, Trovisco V, Rocha AS, et al. BRAF mutations and RET/PTC rearrangements are alternative events in the etiopathogenesis of PTC. Oncogene. 2003;22:4578–80.

    Article  CAS  PubMed  Google Scholar 

  21. Frattini M, Ferrario C, Bressan P, et al. Alternative mutations of BRAF, RET and NTRK1 are associated with similar but distinct gene expression patterns in papillary thyroid cancer. Oncogene. 2004;23:7436–40.

    Article  CAS  PubMed  Google Scholar 

  22. Cohen Y, Xing M, Mambo E, et al. BRAF mutation in papillary thyroid carcinoma. J Natl Cancer Inst. 2003;95:625–7.

    Article  CAS  PubMed  Google Scholar 

  23. Trovisco V, Vieira de Castro I, Soares P, et al. BRAF mutations are associated with some histological types of papillary thyroid carcinoma. J Pathol. 2004;202:247–51.

    Article  CAS  PubMed  Google Scholar 

  24. Hou P, Liu D, Shan Y, et al. Genetic alterations and their relationship in the phosphatidylinositol 3-kinase/Akt pathway in thyroid cancer. Clin Cancer Res. 2007;13:1161–70. doi:10.1158/1078-0432.CCR-06-1125.

    Article  CAS  PubMed  Google Scholar 

  25. Chiosea S, Nikiforova M, Zuo H, et al. A novel complex BRAF mutation detected in a solid variant of papillary thyroid carcinoma. Endocr Pathol. 2009;20:122–6.

    Article  CAS  PubMed  Google Scholar 

  26. Basolo F, Torregrossa L, Giannini R, et al. Correlation between the BRAF V600E mutation and tumor invasiveness in papillary thyroid carcinomas smaller than 20 millimeters: analysis of 1060 cases. J Clin Endocrinol Metab. 2010;95:4197–205.

    Article  CAS  PubMed  Google Scholar 

  27. Ciampi R, Knauf JA, Kerler R, et al. Oncogenic AKAP9-BRAF fusion is a novel mechanism of MAPK pathway activation in thyroid cancer. J Clin Invest. 2005;115:94–101.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Cancer Genome Atlas Research N. Integrated genomic characterization of papillary thyroid carcinoma. Cell. 2014;159:676–90. doi:10.1016/j.cell.2014.09.050.

    Article  CAS  Google Scholar 

  29. Xing M. BRAF mutation in thyroid cancer. Endocr Relat Cancer. 2005;12:245–62. doi:10.1677/erc.1.0978.

    Article  CAS  PubMed  Google Scholar 

  30. Namba H, Nakashima M, Hayashi T, et al. Clinical implication of hot spot BRAF mutation, V599E, in papillary thyroid cancers. J Clin Endocrinol Metab. 2003;88:4393–7.

    Article  CAS  PubMed  Google Scholar 

  31. Nikiforova MN, Kimura ET, Gandhi M, et al. BRAF mutations in thyroid tumors are restricted to papillary carcinomas and anaplastic or poorly differentiated carcinomas arising from papillary carcinomas. J Clin Endocrinol Metab. 2003;88:5399–404.

    Article  CAS  PubMed  Google Scholar 

  32. Begum S, Rosenbaum E, Henrique R, et al. BRAF mutations in anaplastic thyroid carcinoma: implications for tumor origin, diagnosis and treatment. Mod Pathol. 2004;17:1359–63.

    Article  CAS  PubMed  Google Scholar 

  33. Ricarte-Filho JC, Ryder M, Chitale DA, et al. Mutational profile of advanced primary and metastatic radioactive iodine-refractory thyroid cancers reveals distinct pathogenetic roles for BRAF, PIK3CA, and AKT1. Cancer Res. 2009;69:4885–93.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Suarez HG, du Villard JA, Severino M, et al. Presence of mutations in all three ras genes in human thyroid tumors. Oncogene. 1990;5:565–70.

    CAS  PubMed  Google Scholar 

  35. Esapa CT, Johnson SJ, Kendall-Taylor P, et al. Prevalence of Ras mutations in thyroid neoplasia. Clin Endocrinol (Oxf). 1999;50:529–35.

    Article  CAS  Google Scholar 

  36. Motoi N, Sakamoto A, Yamochi T, et al. Role of ras mutation in the progression of thyroid carcinoma of follicular epithelial origin. Pathol Res Pract. 2000;196:1–7.

    Article  CAS  PubMed  Google Scholar 

  37. Manenti G, Pilotti S, Re FC, et al. Selective activation of ras oncogenes in follicular and undifferentiated thyroid carcinomas. Eur J Cancer. 1994;30A:987–93.

    Article  CAS  PubMed  Google Scholar 

  38. Namba H, Rubin SA, Fagin JA. Point mutations of ras oncogenes are an early event in thyroid tumorigenesis. Mol Endocrinol. 1990;4:1474–9.

    Article  CAS  PubMed  Google Scholar 

  39. Karga H, Lee JK, Vickery Jr AL, et al. Ras oncogene mutations in benign and malignant thyroid neoplasms. J Clin Endocrinol Metab. 1991;73:832–6.

    Article  CAS  PubMed  Google Scholar 

  40. Ezzat S, Zheng L, Kolenda J, et al. Prevalence of activating ras mutations in morphologically characterized thyroid nodules. Thyroid. 1996;6:409–16.

    Article  CAS  PubMed  Google Scholar 

  41. Fagin JA. Minireview: branded from the start-distinct oncogenic initiating events may determine tumor fate in the thyroid. Mol Endocrinol. 2002;16:903–11.

    CAS  PubMed  Google Scholar 

  42. Saavedra HI, Knauf JA, Shirokawa JM, et al. The RAS oncogene induces genomic instability in thyroid PCCL3 cells via the MAPK pathway. Oncogene. 2000;19:3948–54.

    Article  CAS  PubMed  Google Scholar 

  43. Basolo F, Pisaturo F, Pollina LE, et al. N-ras mutation in poorly differentiated thyroid carcinomas: correlation with bone metastases and inverse correlation to thyroglobulin expression. Thyroid. 2000;10:19–23.

    Article  CAS  PubMed  Google Scholar 

  44. Garcia-Rostan G, Zhao H, Camp RL, et al. ras mutations are associated with aggressive tumor phenotypes and poor prognosis in thyroid cancer. J Clin Oncol. 2003;21:3226–35.

    Article  CAS  PubMed  Google Scholar 

  45. Santoro M, Carlomagno F, Hay ID, et al. Ret oncogene activation in human thyroid neoplasms is restricted to the papillary cancer subtype. J Clin Invest. 1992;89:1517–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Jhiang SM, Sagartz JE, Tong Q, et al. Targeted expression of the ret/PTC1 oncogene induces papillary thyroid carcinomas. Endocrinology. 1996;137:375–8.

    CAS  PubMed  Google Scholar 

  47. Santoro M, Chiappetta G, Cerrato A, et al. Development of thyroid papillary carcinomas secondary to tissue-specific expression of the RET/PTC1 oncogene in transgenic mice. Oncogene. 1996;12:1821–6.

    CAS  PubMed  Google Scholar 

  48. Powell Jr DJ, Russell J, Nibu K, et al. The RET/PTC3 oncogene: metastatic solid-type papillary carcinomas in murine thyroids. Cancer Res. 1998;58:5523–8.

    CAS  PubMed  Google Scholar 

  49. Nikiforov YE. RET/PTC rearrangement in thyroid tumors. Endocr Pathol. 2002;13:3–16.

    Article  CAS  PubMed  Google Scholar 

  50. Nikiforov YE, Rowland JM, Bove KE, et al. Distinct pattern of ret oncogene rearrangements in morphological variants of radiation-induced and sporadic thyroid papillary carcinomas in children. Cancer Res. 1997;57:1690–4.

    CAS  PubMed  Google Scholar 

  51. Rabes HM, Demidchik EP, Sidorow JD, et al. Pattern of radiation-induced RET and NTRK1 rearrangements in 191 post-chernobyl papillary thyroid carcinomas: biological, phenotypic, and clinical implications. Clin Cancer Res. 2000;6:1093–103.

    CAS  PubMed  Google Scholar 

  52. Fenton CL, Lukes Y, Nicholson D, et al. The ret/PTC mutations are common in sporadic papillary thyroid carcinoma of children and young adults. J Clin Endocrinol Metab. 2000;85:1170–5.

    CAS  PubMed  Google Scholar 

  53. Zhu Z, Ciampi R, Nikiforova MN, et al. Prevalence of RET/PTC rearrangements in thyroid papillary carcinomas: effects of the detection methods and genetic heterogeneity. J Clin Endocrinol Metab. 2006;91:3603–10.

    Article  CAS  PubMed  Google Scholar 

  54. Unger K, Zitzelsberger H, Salvatore G, et al. Heterogeneity in the distribution of RET/PTC rearrangements within individual post-Chernobyl papillary thyroid carcinomas. J Clin Endocrinol Metab. 2004;89:4272–9.

    Article  CAS  PubMed  Google Scholar 

  55. Radice P, Sozzi G, Miozzo M, et al. The human tropomyosin gene involved in the generation of the TRK oncogene maps to chromosome 1q31. Oncogene. 1991;6:2145–8.

    CAS  PubMed  Google Scholar 

  56. Greco A, Pierotti MA, Bongarzone I, et al. TRK-T1 is a novel oncogene formed by the fusion of TPR and TRK genes in human papillary thyroid carcinomas. Oncogene. 1992;7:237–42.

    CAS  PubMed  Google Scholar 

  57. Miranda C, Minoletti F, Greco A, et al. Refined localization of the human TPR gene to chromosome 1q25 by in situ hybridization. Genomics. 1994;23:714–5.

    Article  CAS  PubMed  Google Scholar 

  58. Leeman-Neill RJ, Kelly LM, Liu P, et al. ETV6-NTRK3 is a common chromosomal rearrangement in radiation-associated thyroid cancer. Cancer. 2014 Mar 15;120(6):799–807. doi:10.1002/cncr.28484.

    Google Scholar 

  59. Kelly LM, Barila G, Liu P, et al. Identification of the transforming STRN-ALK fusion as a potential therapeutic target in the aggressive forms of thyroid cancer. Proc Natl Acad Sci U S A. 2014;111(11):4233–8. doi:10.1073/pnas.1321937111.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Kroll TG, Sarraf P, Pecciarini L, et al. PAX8-PPARgamma1 fusion oncogene in human thyroid carcinoma [corrected]. Science. 2000;289:1357–60.

    Article  CAS  PubMed  Google Scholar 

  61. Lui WO, Kytola S, Anfalk L, et al. Balanced translocation (3;7)(p25;q34): another mechanism of tumorigenesis in follicular thyroid carcinoma? Cancer Genet Cytogenet. 2000;119:109–12.

    Article  CAS  PubMed  Google Scholar 

  62. French CA, Alexander EK, Cibas ES, et al. Genetic and biological subgroups of low-stage follicular thyroid cancer. Am J Pathol. 2003;162:1053–60. doi:10.1016/S0002-9440(10)63902-8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Nikiforova MN, Lynch RA, Biddinger PW, et al. RAS point mutations and PAX8-PPAR gamma rearrangement in thyroid tumors: evidence for distinct molecular pathways in thyroid follicular carcinoma. J Clin Endocrinol Metab. 2003;88:2318–26.

    Article  CAS  PubMed  Google Scholar 

  64. Dwight T, Thoppe SR, Foukakis T, et al. Involvement of the PAX8/peroxisome proliferator-activated receptor gamma rearrangement in follicular thyroid tumors. J Clin Endocrinol Metab. 2003;88:4440–5.

    Article  CAS  PubMed  Google Scholar 

  65. Nikiforova MN, Biddinger PW, Caudill CM, et al. PAX8-PPARgamma rearrangement in thyroid tumors: RT-PCR and immunohistochemical analyses. Am J Surg Pathol. 2002;26:1016–23.

    Article  PubMed  Google Scholar 

  66. Marques AR, Espadinha C, Catarino AL, et al. Expression of PAX8-PPAR gamma 1 rearrangements in both follicular thyroid carcinomas and adenomas. J Clin Endocrinol Metab. 2002;87:3947–52.

    CAS  PubMed  Google Scholar 

  67. Horn S, Figl A, Rachakonda PS, et al. TERT promoter mutations in familial and sporadic melanoma. Science. 2013;339:959–61. doi:10.1126/science.1230062.

    Article  CAS  PubMed  Google Scholar 

  68. Huang FW, Hodis E, Xu MJ, et al. Highly recurrent TERT promoter mutations in human melanoma. Science. 2013;339:957–9. doi:10.1126/science.1229259.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Landa I, Ganly I, Chan TA, et al. Frequent somatic TERT promoter mutations in thyroid cancer: higher prevalence in advanced forms of the disease. J Clin Endocrinol Metab. 2013;98:E1562–6. doi:10.1210/jc.2013-2383.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Liu T, Wang N, Cao J, et al. The age- and shorter telomere-dependent TERT promoter mutation in follicular thyroid cell-derived carcinomas. Oncogene. 2013. doi:10.1038/onc.2013.446.

    Google Scholar 

  71. Liu X, Bishop J, Shan Y, et al. Highly prevalent TERT promoter mutations in aggressive thyroid cancers. Endocr Relat Cancer. 2013;20:603–10. doi:10.1530/ERC-13-0210.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  72. Melo M, Rocha AG, Vinagre J, et al. TERT promoter mutations are a major indicator of poor outcome in differentiated thyroid carcinomas. J Clin Endocrinol Metab. 2014;99(5):754–65. doi:10.1210/jc.2013-3734.

    Article  CAS  Google Scholar 

  73. Fagin JA, Matsuo K, Karmakar A, et al. High prevalence of mutations of the p53 gene in poorly differentiated human thyroid carcinomas. J Clin Invest. 1993;91:179–84.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Donghi R, Longoni A, Pilotti S, et al. Gene p53 mutations are restricted to poorly differentiated and undifferentiated carcinomas of the thyroid gland. J Clin Invest. 1993;91:1753–60.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Dobashi Y, Sugimura H, Sakamoto A, et al. Stepwise participation of p53 gene mutation during dedifferentiation of human thyroid carcinomas. Diagn Mol Pathol. 1994;3:9–14.

    Article  CAS  PubMed  Google Scholar 

  76. Ito T, Seyama T, Mizuno T, et al. Unique association of p53 mutations with undifferentiated but not with differentiated carcinomas of the thyroid gland. Cancer Res. 1992;52:1369–71.

    CAS  PubMed  Google Scholar 

  77. Garcia-Rostan G, Camp RL, Herrero A, et al. Beta-catenin dysregulation in thyroid neoplasms: down-regulation, aberrant nuclear expression, and CTNNB1 exon 3 mutations are markers for aggressive tumor phenotypes and poor prognosis. Am J Pathol. 2001;158:987–96.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Garcia-Rostan G, Tallini G, Herrero A, et al. Frequent mutation and nuclear localization of beta-catenin in anaplastic thyroid carcinoma. Cancer Res. 1999;59:1811–5.

    CAS  PubMed  Google Scholar 

  79. Garcia-Rostan G, Costa AM, Pereira-Castro I, et al. Mutation of the PIK3CA gene in anaplastic thyroid cancer. Cancer Res. 2005;65:10199–207.

    Article  CAS  PubMed  Google Scholar 

  80. Santarpia L, El-Naggar AK, Cote GJ, et al. Phosphatidylinositol 3-kinase/akt and ras/raf-mitogen-activated protein kinase pathway mutations in anaplastic thyroid cancer. J Clin Endocrinol Metab. 2008;93:278–84.

    Article  CAS  PubMed  Google Scholar 

  81. Hou P, Liu D, Xing M. Functional characterization of the T1799-1801del and A1799-1816ins BRAF mutations in papillary thyroid cancer. Cell Cycle. 2007;6:377–9.

    Article  CAS  PubMed  Google Scholar 

  82. Dahia PL, Marsh DJ, Zheng Z, et al. Somatic deletions and mutations in the Cowden disease gene, PTEN, in sporadic thyroid tumors. Cancer Res. 1997;57:4710–3.

    CAS  PubMed  Google Scholar 

  83. Giordano TJ, Kuick R, Thomas DG, et al. Molecular classification of papillary thyroid carcinoma: distinct BRAF, RAS, and RET/PTC mutation-specific gene expression profiles discovered by DNA microarray analysis. Oncogene. 2005;24:6646–56.

    Article  CAS  PubMed  Google Scholar 

  84. Chevillard S, Ugolin N, Vielh P, et al. Gene expression profiling of differentiated thyroid neoplasms: diagnostic and clinical implications. Clin Cancer Res. 2004;10:6586–97.

    Article  CAS  PubMed  Google Scholar 

  85. Huang Y, Prasad M, Lemon WJ, et al. Gene expression in papillary thyroid carcinoma reveals highly consistent profiles. Proc Natl Acad Sci U S A. 2001;98:15044–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  86. Mazzanti C, Zeiger MA, Costouros NG, et al. Using gene expression profiling to differentiate benign versus malignant thyroid tumors. Cancer Res. 2004;64:2898–903.

    Article  CAS  PubMed  Google Scholar 

  87. Finley DJ, Arora N, Zhu B, et al. Molecular profiling distinguishes papillary carcinoma from benign thyroid nodules. J Clin Endocrinol Metab. 2004;89:3214–23.

    Article  CAS  PubMed  Google Scholar 

  88. Chen YT, Kitabayashi N, Zhou XK, et al. MicroRNA analysis as a potential diagnostic tool for papillary thyroid carcinoma. Mod Pathol. 2008;21:1139–46.

    Article  CAS  PubMed  Google Scholar 

  89. He H, Jazdzewski K, Li W, et al. The role of microRNA genes in papillary thyroid carcinoma. Proc Natl Acad Sci U S A. 2005;102:19075–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  90. Nikiforova MN, Chiosea SI, Nikiforov YE. MicroRNA expression profiles in thyroid tumors. Endocr Pathol. 2009;20:85–91.

    Article  CAS  PubMed  Google Scholar 

  91. Pallante P, Visone R, Ferracin M, et al. MicroRNA deregulation in human thyroid papillary carcinomas. Endocr Relat Cancer. 2006;13:497–508. doi:13/2/497 [pii] 10.1677/erc.1.01209.

    Article  CAS  PubMed  Google Scholar 

  92. Nikiforova MN, Tseng GC, Steward D, et al. MicroRNA expression profiling of thyroid tumors: biological significance and diagnostic utility. J Clin Endocrinol Metab. 2008;93(5):1600–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  93. Visone R, Russo L, Pallante P, et al. MicroRNAs (miR)-221 and miR-222, both overexpressed in human thyroid papillary carcinomas, regulate p27Kip1 protein levels and cell cycle. Endocr Relat Cancer. 2007;14:791–8.

    Article  CAS  PubMed  Google Scholar 

  94. Jazdzewski K, Boguslawska J, Jendrzejewski J, et al. Thyroid hormone receptor beta (THRB) is a major target gene for microRNAs deregulated in papillary thyroid carcinoma (PTC). J Clin Endocrinol Metab. 2011;96:546–53.

    Article  CAS  Google Scholar 

  95. Weber F, Teresi RE, Broelsch CE, et al. A limited set of human MicroRNA is deregulated in follicular thyroid carcinoma. J Clin Endocrinol Metab. 2006;91:3584–91.

    Article  CAS  PubMed  Google Scholar 

  96. Visone R, Pallante P, Vecchione A, et al. Specific microRNAs are downregulated in human thyroid anaplastic carcinomas. Oncogene. 2007;26:7590–5.

    Article  CAS  PubMed  Google Scholar 

  97. Cooper DS, Doherty GM, Haugen BR, et al. Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid. 2009;19:1167–214.

    Article  PubMed  Google Scholar 

  98. Nikiforov YE, Steward DL, Robinson-Smith TM, et al. Molecular testing for mutations in improving the fine-needle aspiration diagnosis of thyroid nodules. J Clin Endocrinol Metab. 2009;94:2092–8.

    Article  CAS  PubMed  Google Scholar 

  99. Cantara S, Capezzone M, Marchisotta S, et al. Impact of proto-oncogene mutation detection in cytological specimens from thyroid nodules improves the diagnostic accuracy of cytology. J Clin Endocrinol Metab. 2010;95:1365–9.

    Article  CAS  PubMed  Google Scholar 

  100. Ohori NP, Nikiforova MN, Schoedel KE, et al. Contribution of molecular testing to thyroid fine-needle aspiration cytology of “follicular lesion of undetermined significance/atypia of undetermined significance”. Cancer Cytopathol. 2010;118:17–23.

    Article  CAS  PubMed  Google Scholar 

  101. Kim SK, Hwang TS, Yoo YB, et al. Surgical results of thyroid nodules according to a management guideline based on the BRAF(V600E) mutation status. J Clin Endocrinol Metab. 2011;96:658–64. doi:10.1210/jc.2010-1082.

    Article  CAS  PubMed  Google Scholar 

  102. Nikiforov YE, Nikiforova MN. Molecular genetics and diagnosis of thyroid cancer. Nat Rev Endocrinol. 2011;7(10):569–80. doi:10.1038/nrendo.2011.142 nrendo.2011.142 [pii].

    Article  CAS  PubMed  Google Scholar 

  103. Nikiforov Y. Impact of mutational testing on the diagnosis and management of patients with cytologically indeterminate thyroid nodules: a prospective analysis of 1056 FNA samples. J Clin Endocrinol Metab. 2011;96:3390–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  104. Mehta RS, Carty SE, Ohori NP, et al. Nodule size is an independent predictor of malignancy in mutation-negative nodules with follicular lesion of undetermined significance cytology. Surgery. 2013;154:730–6. doi:10.1016/j.surg.2013.05.015. discussion 736–8.

    Article  PubMed  Google Scholar 

  105. Yip L, Wharry L, Armstrong M, et al. A clinical algorithm for fine-needle aspiration molecular testing effectively guides the appropriate extent of initial thyroidectomy. Ann Surg. 2014;260(1):163–8. doi:2010.1097/SLA.0000000000000215.

    Article  PubMed  Google Scholar 

  106. Yip L, Nikiforova M, Carty SE, et al. Cost impact of molecular testing for indeterminate thyroid nodule fine needle aspiration biopsies. J Clin Endocrinol Metab. 2012.

    Google Scholar 

  107. Nikiforova MN, Wald AI, Roy S, et al. Targeted next-generation sequencing panel (ThyroSeq) for detection of mutations in thyroid cancer. J Clin Endocrinol Metab. 2013;98:E1852–60. doi:10.1210/jc.2013-2292.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  108. Le Mercier M, D’Haene N, De Neve N, et al. Next-generation sequencing improves the diagnosis of thyroid FNA specimens with indeterminate cytology. Histopathology. 2015;66(2):215–24. doi:10.1111/his.12461.

    Article  PubMed  Google Scholar 

  109. Nikiforov YE, Carty SE, Chiosea SI, et al. Highly accurate diagnosis of cancer in thyroid nodules with follicular neoplasm/suspicious for a follicular neoplasm cytology by ThyroSeq v2 next-generation sequencing assay. Cancer. 2014. 120(23):3627–34. doi:10.1002/cncr.29038.

    Google Scholar 

  110. Chudova D, Wilde JI, Wang ET, et al. Molecular classification of thyroid nodules using high-dimensionality genomic data. J Clin Endocrinol Metab. 2010;95(12):5296–304.

    Article  CAS  PubMed  Google Scholar 

  111. Alexander EK, Kennedy GC, Baloch ZW, et al. Preoperative diagnosis of benign thyroid nodules with indeterminate cytology. N Engl J Med. 2012;367:705–15. doi:10.1056/NEJMoa1203208.

    Article  CAS  PubMed  Google Scholar 

  112. Alexander EK, Schorr M, Klopper J, et al. Multicenter clinical experience with the Afirma gene expression classifier. J Clin Endocrinol Metab. 2014;99:119–25. doi:10.1210/jc.2013-2482.

    Article  CAS  PubMed  Google Scholar 

  113. Duick DS, Klopper JP, Diggans JC, et al. The impact of benign gene expression classifier test results on the endocrinologist-patient decision to operate on patients with thyroid nodules with indeterminate fine-needle aspiration cytopathology. Thyroid. 2012;22:996–1001. doi:10.1089/thy.2012.0180.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  114. Xing M. BRAF mutation in papillary thyroid cancer: pathogenic role, molecular bases, and clinical implications. Endocr Rev. 2007;28:742–62. doi:10.1210/er.2007-0007.

    Article  CAS  PubMed  Google Scholar 

  115. Ito Y, Yoshida H, Maruo R, et al. BRAF mutation in papillary thyroid carcinoma in a Japanese population: its lack of correlation with high-risk clinicopathological features and disease-free survival of patients. Endocr J. 2009;56:89–97.

    Article  CAS  PubMed  Google Scholar 

  116. Kim TY, Kim WB, Song JY, et al. The BRAF mutation is not associated with poor prognostic factors in Korean patients with conventional papillary thyroid microcarcinoma. Clin Endocrinol (Oxf). 2005;63:588–93. doi:10.1111/j.1365-2265.2005.02389.x.

    Article  CAS  Google Scholar 

  117. Liu RT, Chen YJ, Chou FF, et al. No correlation between BRAFV600E mutation and clinicopathological features of papillary thyroid carcinomas in Taiwan. Clin Endocrinol (Oxf). 2005;63:461–6. doi:10.1111/j.1365-2265.2005.02367.x.

    Article  Google Scholar 

  118. Tufano RP, Teixeira GV, Bishop J, et al. BRAF mutation in papillary thyroid cancer and its value in tailoring initial treatment: a systematic review and meta-analysis. Medicine. 2012;91:274–86.

    Article  CAS  PubMed  Google Scholar 

  119. Xing M, Alzahrani AS, Carson KA, et al. Association between BRAF V600E mutation and mortality in patients with papillary thyroid cancer. JAMA. 2013;309:1493–501.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  120. Liu Z, Hou P, Ji M, et al. Highly prevalent genetic alterations in receptor tyrosine kinases and phosphatidylinositol 3-kinase/akt and mitogen-activated protein kinase pathways in anaplastic and follicular thyroid cancers. J Clin Endocrinol Metab. 2008;93:3106–16. doi:10.1210/jc.2008-0273.

    Article  CAS  PubMed  Google Scholar 

  121. Schlumberger M, Sherman SI. Approach to the patient with advanced differentiated thyroid cancer. Eur J Endocrinol. 2012;166:5–11. doi:10.1530/EJE-11-0631.

    Article  CAS  PubMed  Google Scholar 

  122. Sapio MR, Posca D, Troncone G, et al. Detection of BRAF mutation in thyroid papillary carcinomas by mutant allele-specific PCR amplification (MASA). Eur J Endocrinol. 2006;154:341–8.

    Article  CAS  PubMed  Google Scholar 

  123. Rowe LR, Bentz BG, Bentz JS. Detection of BRAF V600E activating mutation in papillary thyroid carcinoma using PCR with allele-specific fluorescent probe melting curve analysis. J Clin Pathol. 2007;60:1211–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  124. Hayashida N, Namba H, Kumagai A, et al. A rapid and simple detection method for the BRAF(T1796A) mutation in fine-needle aspirated thyroid carcinoma cells. Thyroid. 2004;14:910–5.

    Article  CAS  PubMed  Google Scholar 

  125. Jin L, Sebo TJ, Nakamura N, et al. BRAF mutation analysis in fine needle aspiration (FNA) cytology of the thyroid. Diagn Mol Pathol. 2006;15:136–43.

    Article  CAS  PubMed  Google Scholar 

  126. Magnin S, Viel E, Baraquin A, et al. A multiplex SNaPshot assay as a rapid method for detecting KRAS and BRAF mutations in advanced colorectal cancers. J Mol Diagn. 2011;13:485–92. doi:10.1016/j.jmoldx.2011.05.010.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  127. Arcila M, Lau C, Nafa K, et al. Detection of KRAS and BRAF mutations in colorectal carcinoma roles for high-sensitivity locked nucleic acid-PCR sequencing and broad-spectrum mass spectrometry genotyping. J Mol Diagn. 2011;13:64–73. doi:10.1016/j.jmoldx.2010.11.005.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  128. Elenitoba-Johnson KS, Bohling SD, Wittwer CT, et al. Multiplex PCR by multicolor fluorometry and fluorescence melting curve analysis. Nat Med. 2001;7:249–53.

    Article  CAS  PubMed  Google Scholar 

  129. Unger K, Zurnadzhy L, Walch A, et al. RET rearrangements in post-Chernobyl papillary thyroid carcinomas with a short latency analysed by interphase FISH. Br J Cancer. 2006;94:1472–7. doi:10.1038/sj.bjc.6603109.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  130. Lappinga PJ, Kip NS, Jin L, et al. HMGA2 gene expression analysis performed on cytologic smears to distinguish benign from malignant thyroid nodules. Cancer Cytopathol. 2010;118:287–97.

    Article  CAS  PubMed  Google Scholar 

  131. Prasad NB, Somervell H, Tufano RP, et al. Identification of genes differentially expressed in benign versus malignant thyroid tumors. Clin Cancer Res. 2008;14:3327–37.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  132. Lubitz CC, Fahey 3rd TJ. The differentiation of benign and malignant thyroid nodules. Adv Surg. 2005;39:355–77.

    Article  PubMed  Google Scholar 

  133. Vriens MR, Weng J, Suh I, et al. MicroRNA expression profiling is a potential diagnostic tool for thyroid cancer. Cancer. 2011. doi:10.1002/cncr.26587.

    PubMed Central  Google Scholar 

  134. Mazeh H, Mizrahi I, Halle D, et al. Development of a microRNA-based molecular assay for the detection of papillary thyroid carcinoma in aspiration biopsy samples. Thyroid. 2011;21:111–8. doi:10.1089/thy.2010.0356.

    Article  CAS  PubMed  Google Scholar 

  135. Schreinemakers JM, Pieterman CR, Scholten A, et al. The optimal surgical treatment for primary hyperparathyroidism in MEN1 patients: a systematic review. World J Surg. 2011;35:1993–2005. doi:10.1007/s00268-011-1068-9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri E. Nikiforov M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nikiforova, M.N., Nikiforov, Y.E. (2016). Thyroid Cancer. In: Leonard, D. (eds) Molecular Pathology in Clinical Practice. Springer, Cham. https://doi.org/10.1007/978-3-319-19674-9_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19674-9_36

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19673-2

  • Online ISBN: 978-3-319-19674-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics