Skip to main content

Advertisement

Log in

A Pilot Study Based on the Correlation Between Whole Exome and Transcriptome Reveals Potent Variants in the Indian Population of Cervical Cancer

  • ORIGINAL ARTICLE
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Cervical malignancy (CC) is the 2nd most prevalent malignancy among females, leading to cancer mortality. Primary detection of CC tumors results in an improved prognosis. CC is a malignant gynecological tumor, with few treatment options. New diagnostic and therapeutic agents are required to expand patient survival and quality of life. If CC tumors can be found at an early stage, the prognosis is much brighter. New diagnostic and therapeutic agents are needed to increase patient survival and quality of life. In this work, we performed whole-exome sequencing utilizing V5 (Illumina platform) 10 samples, 5 control and 5 CC tumour tissue, and we compared the results with transcriptome studies. KMT2C variations were shown to be among the most vicious in this analysis. From an Indian viewpoint, we found a plethora of SNVs and mutations, including those with known, unknown, and possible effects on health. Based on our findings, we know that the KMT2C gene is on chr. Seven and in exon 8, all three recognized variants are missense, synonymous, coding synonymous, non-coding variants, and GnomAD MAF (− 0.05). The variation at position (7:152265091, T > A, SNV 62478356) in KMT2C is unique, potent, and pathogenic. The missense coding transcript CIQTNF maps to chromosome 7 and displays T > C SNV. In addition, we performed single strand conformational polymorphism analysis on 64 samples and further confirmed them using Sanger sequencing to understand and verify the mutations. KMT2C shows a log FC value of − 1.16. Understanding emerging harmful mutations from an Indian viewpoint is facilitated by our bioinformatics-based, extensive correlation studies of WES analysis. Potentially harmful and new mutations were found in our preliminary analysis; among these ten top mutated genes, KMT2C and CIQTNF were altered in ten cases of CC with an Indian phenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability

All raw reads are available through NCBI-SRA PRJNA Bio project submission: SUB10812780. The microarray data has been deposited in the GEO database under accession number GSE127265 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE127265). If you have any inquiries, please contact the respective author.

Abbreviations

CC:

Cervical Cancer

AHG:

Affymetrix human genome

CSCC:

Cervical squamous cell carcinoma

GEO:

Gene expression Omnibus

TCGA:

Cancer Genome Atlas

WES:

Whole exome sequencing

FDR:

False discovery rate

NGS:

Next generation sequencing

AGCC:

Affymetrix GeneChip® Command Console

KM:

Kaplan–Mayer

AEC:

Affymetrix expression console

FFPE:

Formalin-fixed paraffin-embedded

TAC:

Transcriptome analysis console

HCD:

Human Clariom D

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71:209–249. https://doi.org/10.3322/caac.21660

    Article  CAS  PubMed  Google Scholar 

  2. Gupta R, Srinivasan R, Nijhawan R, Suri V, Uppal R (2010) Protein p16INK4A expression in cervical intraepithelial neoplasia and invasive squamous cell carcinoma of uterine cervix. Indian J Pathol Microbiol 53:7–11. https://doi.org/10.4103/0377-4929.59174

    Article  PubMed  Google Scholar 

  3. Poondla N, Madduru D, Duppala SK, Velpula S, Nunia V, Kharb S, Ghatak S, Mishra AK, Vuree S, Neyaz MK, Suravajhala P (2021) Cervical cancer in the era of precision medicine: a perspective from developing countries. Adv Cancer Biol Metastas 3:100015. https://doi.org/10.1016/j.adcanc.2021.100015

    Article  CAS  Google Scholar 

  4. Piñeros M, Saraiya M, Baussano I, Bonjour M, Chao A, Bray F (2021) The role and utility of population-based cancer registries in cervical cancer surveillance and control. Prev Med 144:106237. https://doi.org/10.1016/j.ypmed.2020.106237

    Article  PubMed  PubMed Central  Google Scholar 

  5. Arbyn M, Weiderpass E, Bruni L, de Sanjosé S, Saraiya M, Ferlay J, Bray F (2020) Estimates of incidence and mortality of cervical cancer in 2018: a worldwide analysis. Lancet Glob Health 8:e191-203. https://doi.org/10.1016/S2214-109X(19)30482-6

    Article  PubMed  Google Scholar 

  6. Chan CK, Aimagambetova G, Ukybassova T, Kongrtay K, Azizan A (2019) Human papillomavirus infection and cervical cancer: epidemiology, screening, and vaccination—review of current perspectives. J Oncol. https://doi.org/10.1155/2019/3257939

    Article  PubMed  PubMed Central  Google Scholar 

  7. Cohen PA, Jhingran A, Oaknin A, Denny L (2019) Cervical cancer. Lancet 393:169–182. https://doi.org/10.1016/S0140-6736(18)32470-X

    Article  PubMed  Google Scholar 

  8. Wang YX, Arvizu M, Rich-Edwards JW, Stuart JJ, Manson JE, Missmer SA, Pan A, Chavarro JE (2020) Menstrual cycle regularity and length across the reproductive lifespan and risk of premature mortality: prospective cohort study. BMJ. https://doi.org/10.1136/bmj.m3464

    Article  PubMed  PubMed Central  Google Scholar 

  9. Meena N, Mathur P, Medicherla KM, Suravajhala P (2018) A bioinformatics pipeline for whole exome sequencing: overview of the processing and steps from raw data to downstream analysis. Bio Protocol. https://doi.org/10.21769/BioProtoc.2805

    Article  Google Scholar 

  10. Saslow D, Runowicz CD, Solomon D, Moscicki AB, Smith RA, Eyre HJ, Cohen C (2002) American cancer society guideline for the early detection of cervical neoplasia and cancer. CA Cancer J Clin 52:342–362. https://doi.org/10.3322/CANJCLIN.52.6.342

    Article  PubMed  Google Scholar 

  11. Katz Y, Wang ET, Silterra J, Schwartz S, Wong B, Thorvaldsdottir H, Robinson JT, Mesirov JP, Airoldi EM, Burge CB (2015) Quantitative visualization of alternative exon expression from RNA-seq data. Bioinformatics 31:2400–2402. https://doi.org/10.1093/bioinformatics/btv034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Thorvaldsdóttir H, Robinson JT, Mesirov JP (2013) Integrative genomics viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform 14:178–192. https://doi.org/10.1093/bib/bbs017

    Article  CAS  PubMed  Google Scholar 

  13. Scholl S, Popovic M, de La Rochefordiere A, Girard E, Dureau S, Mandic A, Koprivsek K, Samet N, Craina M, Margan M, Samuels S (2019) Clinical and genetic landscape of treatment naive cervical cancer: alterations in PIK3CA and in epigenetic modulators associated with sub-optimal outcome. EBioMedicine 43:253–260. https://doi.org/10.1016/j.ebiom.2019.03.069

    Article  PubMed  PubMed Central  Google Scholar 

  14. Sd A, Pasumarthi D, Pasha A, Doneti R, Botlagunta M, Pawar SC (2021) Identification of differentially expressed genes in cervical cancer patients by comparative transcriptome analysis. BioMed Res Int. https://doi.org/10.1155/2021/8810074

    Article  Google Scholar 

  15. Wheeler DL, Chappey C, Lash AE, Leipe DD, Madden TL, Schuler GD, Tatusova TA, Rapp BA (2000) Database resources of the national center for biotechnology information. Nucleic Acid Res 28:10–14. https://doi.org/10.1093/nar/28.1.10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li T, Fan J, Wang B, Traugh N, Chen Q, Liu JS, Li B, Liu XS (2017) TIMER: a web server for comprehensive analysis of tumor-infiltrating immune cells. Cancer Res 77:e108–e110. https://doi.org/10.1158/0008-5472.CAN-17-0307/SUPPLEMENTARY-VIDEO-S1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li T, Fu J, Zeng Z, Cohen D, Li J, Chen Q, Li B, Liu XS (2020) TIMER2. 0 for analysis of tumor-infiltrating immune cells. Nucleic Acid Res 48:W509–W514. https://doi.org/10.1093/NAR/GKAA407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Goel MK, Khanna P, Kishore J (2010) Understanding survival analysis: Kaplan-Meier estimate. Int J Ayurveda Res 1:274. https://doi.org/10.4103/0974-7788.76794

    Article  PubMed  PubMed Central  Google Scholar 

  19. Nagy Á, Lánczky A, Menyhárt O, Győrffy B (2018) Validation of miRNA prognostic power in hepatocellular carcinoma using expression data of independent datasets. Sci Rep 8:9227. https://doi.org/10.1038/s41598-018-29514-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nagy Á, Lánczky A, Menyhárt O, Győrffy B (2018) Validation of miRNA prognostic power in hepatocellular carcinoma using expression data of independent datasets. Sci Rep 8:9227. https://doi.org/10.1038/S41598-018-27521-Y

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K (2017) KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acid Res 45:D353–D361. https://doi.org/10.1093/NAR/GKW1092

    Article  CAS  PubMed  Google Scholar 

  22. Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acid Res 28:27–30. https://doi.org/10.1093/NAR/28.1.27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S, Doncheva NT, Legeay M, Fang T, Bork P, Jensen LJ (2021) The STRING database in 2021: customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acid Res 49:D605–D612. https://doi.org/10.1093/NAR/GKAA1074

    Article  CAS  PubMed  Google Scholar 

  24. Mering CV, Huynen M, Jaeggi D, Schmidt S, Bork P, Snel B (2003) STRING: a database of predicted functional associations between proteins. Nucleic Acid Res 31:258–261. https://doi.org/10.1093/nar/gkg034

    Article  CAS  Google Scholar 

  25. Ozsolak F, Milos PM (2011) RNA sequencing: advances, challenges and opportunities (2011). Nat Rev Genet 12:87–98. https://doi.org/10.1038/NRG2934

    Article  CAS  PubMed  Google Scholar 

  26. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63. https://doi.org/10.1038/NRG2484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Stephens PJ, Tarpey PS, Davies H, Van Loo P, Greenman C, Wedge DC, Nik-Zainal S, Martin S, Varela I, Bignell GR, Yates LR (2012) The landscape of cancer genes and mutational processes in breast cancer. Nature 486:400–404. https://doi.org/10.1038/NATURE11017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wu YA, Wang X, Wu F, Huang R, Xue F, Liang G, Tao M, Cai P, Huang Y (2012) Transcriptome profiling of the cancer, adjacent non-tumor and distant normal tissues from a colorectal cancer patient by deep sequencing. https://doi.org/10.1371/JOURNAL.PONE.0041001

  29. Poleboyina PK, Rampogu S, Doneti R, Pasha A, Poleboyina SM, Bhanothu S, Pasumarthi D, SD A, Kumbhakar D, Lee KW, Pawar SC (2022) Screening and identification of potential inos inhibitors to curtail cervical cancer progression: an in silico drug repurposing approach. Appl Biochem Biotechnol. https://doi.org/10.1007/s12010-021-03718-2

    Article  PubMed  Google Scholar 

  30. Yi M, Tang Y, Liu B, Li Q, Zhou X, Yu S, Fu S, Cai Y, Yuan X (2016) Genetic variants in the ITGB6 gene is associated with the risk of radiation pneumonitis in lung cancer patients treated with thoracic radiation therapy. Tumor Biol 37:3469–3477. https://doi.org/10.1007/S13277-015-4171-Y

    Article  CAS  Google Scholar 

  31. Tamrakar VK, Parihar NS, Bhat J, Rajasubramaniam S (2023) Strengthening the diagnosis of drug-resistant tuberculosis using ngs-based approaches and bioinformatics pipelines for data analysis in India. Indian J Microbiol. https://doi.org/10.1007/s12088-023-01134-0

    Article  Google Scholar 

  32. De Cario R, Kura A, Suraci S, Magi A, Volta A, Marcucci R, Gori AM, Pepe G, Giusti B, Sticchi E (2020) Sanger validation of high-throughput sequencing in genetic diagnosis: still the best practice? Front Genetics 11:592588

    Article  Google Scholar 

  33. Deepti P, Pasha A, Kumbhakar DV, Doneti R, Heena SK, Bhanoth S, Poleboyina PK, Yadala R, Annapurna SD, Pawar SC (2022) Overexpression of secreted phosphoprotein 1 (SPP1) predicts poor survival in HPV positive cervical cancer. Gene 824:146381. https://doi.org/10.1016/J.GENE.2022.146381

    Article  CAS  PubMed  Google Scholar 

  34. Nesakumar M, Luke EH, Vetrivel U (2023) Next-gen dual transcriptomics for adult extrapulmonary tuberculosis biomarkers and host-pathogen interplay in human cells: a strategic review. Indian J Microbiol. https://doi.org/10.1007/s12088-023-01143-z

    Article  PubMed  Google Scholar 

  35. Faundes V, Newman WG, Bernardini L, Canham N, Clayton-Smith J, Dallapiccola B, Davies SJ, Demos MK, Goldman A, Gill H, Horton R (2018) Histone lysine methylases and demethylases in the landscape of human developmental disorders. Am J Hum Genetic 102:175–187. https://doi.org/10.1016/j.ajhg.2017.11.013

    Article  CAS  Google Scholar 

  36. Mann M, Kumar S, Chauhan SS, Bhatla N, Kumar S, Bakhshi S, Gupta R, Sharma A, Kumar L (2019) Correction: PARP-1 inhibitor modulate β-catenin signaling to enhance cisplatin sensitivity in cancer cervix. Oncotarget 10:4802. https://doi.org/10.18632/oncotarget.27101

    Article  PubMed  PubMed Central  Google Scholar 

  37. Sujitha S, Vishnu US, Karthikeyan R, Sankarasubramanian J, Gunasekaran P, Rajendhran J (2019) Genome investigation of a cariogenic pathogen with implications in cardiovascular diseases. Indian J Microbiol 59:451–459. https://doi.org/10.1007/s12088-019-00823-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the support from MNJ Hospital, Hyderabad, for the ethical committee towards kind assistance of tissue sampling. We sincerely acknowledge SCP for her support. We are greatly indebted to Bioclues.org and its founder, PS, for his valuable time and energy in helping with data analysis and editing the complete manuscript preparations. We gratefully acknowledge the resources provided by BISR, Jaipur, Rajasthan. We specially acknowledge  Dr. Ashwani Kumari, DNA Xperts Ashwani for performing Whole Exome Sequencing and clearing all our queries. We thank the Department of Genetics and Biotechnology, Osmania University, Hyderabad, School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, Punjab, and GenepoweRx (K&H Personalized Medicine Clinic), Hyderabad, Telangana, India for their support and encouragement.

Funding

Prof. Smita C. Pawar received funds supporting this project from the Science and Engineering Research Board (SERB), India (EEQ/ 2019/000569), on January 6, 2020.

Author information

Authors and Affiliations

Authors

Contributions

Sugunakar Vuree (SGV), Smita C. Pawar (SCP) and Prashanth Suravajhala (PS) conceived the idea. Santosh Kumari Duppala (SKD)is the first author who wrote the manuscript and performed analysis. SKD, SGV and PS analysed the data and interpreted the whole manuscript. Pavan Kumar Poleboyina (PKB), Bhumandeep Kour (BK), Ashish Vyas (AV), and Govardhan Bale (GB) performed lateral analyses. PS and SGV critically reviewed and proofread the manuscript. All the authors have read and approved the final version of the manuscript.

Corresponding authors

Correspondence to Smita C. Pawar, Prashanth N. Suravajhala or Sugunakar Vuree.

Ethics declarations

Conflict of interest

The authors didn’t have any competing interests.

Ethical Approval

All the institutional guidelines and ethical clearance are carried out from MNJ Hospital Hyderabad Telangana (Regd No: ECR/227/Inst/AP/2013/RR-19) with an approval date of 20 Jan 2020.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duppala, S.K., Poleboyina, P.K., Kour, B. et al. A Pilot Study Based on the Correlation Between Whole Exome and Transcriptome Reveals Potent Variants in the Indian Population of Cervical Cancer. Indian J Microbiol (2024). https://doi.org/10.1007/s12088-024-01295-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12088-024-01295-6

Keywords

Navigation