Skip to main content
Log in

Detection of Lactic Acid Bacteria in Metasandstone and Limestone Caves of Chapada Diamantina, Brazil

  • SHORT COMMUNICATIONS
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Caves are unique habitats, ranging from well-illuminated to devoid of light environments that host various forms of life. Among the microbial groups that can inhabit these environments across different lithologies are lactic acid bacteria (LAB), a widely distributed group of bacteria that are poorly understood in cave environments. In this study, samples from limestone and sandstone caves were analyzed to determine the presence of LAB using two group-specific primer pairs. Only one of the primer pairs amplified, and the DGGE analysis showed a profile with a few bands for each sample, except for the entrance and the first inner sample from the metasandstone cave, and one inner sample from the limestone cave, which had a higher number of operational taxonomic units (OTUs). Sequencing of selected OTUs revealed the presence of Streptococcus and Lactococcus. Energy-dispersive X-ray spectroscopy showed that the inner sample from the limestone cave with a higher number of OTUs also had a higher percentage of magnesium. Despite efforts to cultivate LAB using common culture media such as MRS and GYP, no growth was observed, suggesting that these media may not be suitable for isolating LAB from cave sediments and rocks. The presence of this group in all nine samples analyzed from caves highlights the significance of these microorganisms and suggests the need for further research to cultivate and understand their role in the cave microbial community and their biotechnological potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Melo TA, dos Santos TF, Pereira LR et al (2017) Functional profile evaluation of Lactobacillus fermentum TCUESC01: a new potential probiotic strain isolated during cocoa fermentation. Biomed Res Int 2017:1–7. https://doi.org/10.1155/2017/5165916

    Article  CAS  Google Scholar 

  2. Campana R, van Hemert S, Baffone W (2017) Strain-specific probiotic properties of lactic acid bacteria and their interference with human intestinal pathogens invasion. Gut Pathog 9:12. https://doi.org/10.1186/s13099-017-0162-4

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ringø E, Løvmo L, Kristiansen M et al (2010) Lactic acid bacteria vs. pathogens in the gastrointestinal tract of fish: a review. Aquac Res 41:451–467. https://doi.org/10.1111/j.1365-2109.2009.02339.x

    Article  Google Scholar 

  4. Ameen FA, Hamdan AM, El-Naggar MY (2020) Assessment of the heavy metal bioremediation efficiency of the novel marine lactic acid bacterium, Lactobacillus plantarum MF042018. Sci Rep 10:314. https://doi.org/10.1038/s41598-019-57210-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bhakta JN, Bhattacharya S, Lahiri S, Panigrahi AK (2022) Probiotic characterization of arsenic-resistant lactic acid bacteria for possible application as arsenic bioremediation tool in fish for safe fish food production. Probiotics Antimicrob Proteins. https://doi.org/10.1007/s12602-022-09921-9

    Article  PubMed  Google Scholar 

  6. Daranas N, Roselló G, Cabrefiga J et al (2019) Biological control of bacterial plant diseases with Lactobacillus plantarum strains selected for their broad-spectrum activity. Ann Appl Biol 174:92–105. https://doi.org/10.1111/aab.12476

    Article  PubMed  Google Scholar 

  7. Kharazian ZA, SalehiJouzani G, Aghdasi M et al (2017) Biocontrol potential of Lactobacillus strains isolated from corn silages against some plant pathogenic fungi. Biol Control 110:33–43. https://doi.org/10.1016/j.biocontrol.2017.04.004

    Article  Google Scholar 

  8. Hwanhlem N, Chobert J-M, H-Kittikun A, (2014) Bacteriocin-producing lactic acid bacteria isolated from mangrove forests in southern Thailand as potential bio-control agents in food: Isolation, screening and optimization. Food Control 41:202–211. https://doi.org/10.1016/j.foodcont.2014.01.021

    Article  CAS  Google Scholar 

  9. Chen Y-S, Yanagida F, Shinohara T (2005) Isolation and identification of lactic acid bacteria from soil using an enrichment procedure. Lett Appl Microbiol 40:195–200. https://doi.org/10.1111/j.1472-765X.2005.01653.x

    Article  CAS  PubMed  Google Scholar 

  10. Lamont JR, Wilkins O, Bywater-Ekegärd M, Smith DL (2017) From yogurt to yield: potential applications of lactic acid bacteria in plant production. Soil Biol Biochem 111:1–9. https://doi.org/10.1016/j.soilbio.2017.03.015

    Article  CAS  Google Scholar 

  11. Northup DE, Barns SM, Yu LE et al (2003) Diverse microbial communities inhabiting ferromanganese deposits in Lechuguilla and Spider Caves. Environ Microbiol 5:1071–1086

    Article  PubMed  Google Scholar 

  12. Banskar S, Bhute SS, Suryavanshi MV et al (2016) Microbiome analysis reveals the abundance of bacterial pathogens in Rousettus leschenaultii guano. Sci Rep 6:36948. https://doi.org/10.1038/srep36948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Borda D, Năstase-Bucur R, Spînu M et al (2014) Aerosolized microbes from organic rich materials: case study of Bat Guano from caves in Romania. J Cave Karst Stud 76:114–126. https://doi.org/10.4311/2013MB0116

    Article  Google Scholar 

  14. Sakoui S, Derdak R, Addoum B et al (2022) The first study of probiotic properties and biological activities of lactic acid bacteria isolated from Bat Guano from Er-rachidia. Morocco LWT 159:113224. https://doi.org/10.1016/j.lwt.2022.113224

    Article  CAS  Google Scholar 

  15. Newman MM, Kloepper LN, Duncan M et al (2018) Variation in bat guano bacterial community composition with depth. Front Microbiol. https://doi.org/10.3389/fmicb.2018.00914

    Article  PubMed  PubMed Central  Google Scholar 

  16. Dong Y, Chen Q, Fang Z et al (2022) Gut bacteria reflect the adaptation of Diestrammena japanica (Orthoptera: Rhaphidophoridae) to the cave. Front Microbiol. https://doi.org/10.3389/fmicb.2022.1016608

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lemes CGC, Villa MM, Felestrino ÉB et al (2021) 16S rRNA gene amplicon sequencing data of the iron Quadrangle Ferruginous Caves (Brazil) shows the importance of conserving this singular and threatened geosystem. Diversity (Basel) 13:494. https://doi.org/10.3390/d13100494

    Article  CAS  Google Scholar 

  18. Mudgil D, Paul D, Baskar S et al (2022) Cultivable microbial diversity in speleothems using MALDI-TOF spectrometry and DNA sequencing from Krem Soitan, Krem Lawbah, Krem Mawpun, Khasi Hills, Meghalaya India. Arch Microbiol 204:495. https://doi.org/10.1007/s00203-022-02916-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Marques E, Dias J, Gross E et al (2019) Purple sulfur bacteria dominate microbial community in Brazilian limestone cave. Microorganisms 7:29. https://doi.org/10.3390/microorganisms7020029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zheng J, Wittouck S, Salvetti E et al (2020) A taxonomic note on the genus Lactobacillus: description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int J Syst Evol Microbiol 70:2782–2858. https://doi.org/10.1099/ijsem.0.004107

    Article  CAS  PubMed  Google Scholar 

  21. Walter J, Hertel C, Tannock GW et al (2001) Detection of Lactobacillus, Pediococcus, Leuconostoc, and Weissella species in human feces by using group-specific PCR primers and denaturing gradient gel electrophoresis. Appl Environ Microbiol 67:2578–2585. https://doi.org/10.1128/AEM.67.6.2578-2585.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Endo A, Okada S (2005) Monitoring the lactic acid bacterial diversity during shochu fermentation by PCR-denaturing gradient gel electrophoresis. J Biosci Bioeng 99:216–221. https://doi.org/10.1263/jbb.99.216

    Article  CAS  PubMed  Google Scholar 

  23. de Marques E LS, Gross E, Dias JCT, et al (2018) Ammonia oxidation ( amoA) and nitrogen fixation ( nifH ) genes along metasandstone and limestone caves of Brazil. Geomicrobiol J 35:869–878. https://doi.org/10.1080/01490451.2018.1482386

    Article  CAS  Google Scholar 

  24. MacLeod RA, Snell EE (1947) Some mineral requirements of the lactic acid bacteria. J Biol Chem 170:351–365

    Article  CAS  Google Scholar 

  25. Loubiere P, Cocaign-Bousquet M, Matos J et al (1997) Influence of end-products inhibition and nutrient limitations on the growth of Lactococcus lactis subsp. lactis. J Appl Microbiol 82:95–100

    Article  CAS  Google Scholar 

  26. Leroy F, De Vuyst L (2001) Growth of the bacteriocin-producing Lactobacillus sakei Strain CTC 494 in MRS broth is strongly reduced due to nutrient exhaustion: a nutrient depletion model for the growth of lactic acid bacteria. Appl Environ Microbiol 67:4407–4413. https://doi.org/10.1128/AEM.67.10.4407-4413.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Eltink E, Castro M, Montefeltro FC et al (2020) Mammalian fossils from Gruta do Ioiô cave and past of the Chapada Diamantina, northeastern Brazil, using taphonomy, radiocarbon dating and paleoecology. J South Am Earth Sci 98:102379. https://doi.org/10.1016/j.jsames.2019.102379

    Article  CAS  Google Scholar 

  28. Altın G, Nikerel E, Şahin F (2017) Draft genome sequence of magnesium-dissolving Lactococcus garvieae A1, isolated from soil. Genome Announc. https://doi.org/10.1128/genomeA.00386-17

    Article  PubMed  PubMed Central  Google Scholar 

  29. Serna-Cock L, de Stouvenel AR (2006) Lactic acid production by a strain of Lactococcus lactis subs lactis isolated from sugar cane plants. Electron J Biotechnol 9:40–45. https://doi.org/10.2225/vol9-issue1-fulltext-10

    Article  CAS  Google Scholar 

  30. Süle J, Kõrösi T, Hucker A, Varga L (2014) Evaluation of culture media for selective enumeration of bifidobacteria and lactic acid bacteria. Braz J Microbiol 45:1023–1030. https://doi.org/10.1590/S1517-83822014000300035

    Article  PubMed  PubMed Central  Google Scholar 

  31. Tanasupawat S, Shida O, Okada S, Komagata K (2000) Lactobacillus acidipiscis sp. nov. and Weissella thailandensis sp. nov., isolated from fermented fish in Thailand. Int J Syst Evol Microbiol 50:1479–1485. https://doi.org/10.1099/00207713-50-4-1479

    Article  CAS  PubMed  Google Scholar 

  32. Wenzler E, Kamboj K, Balada-Llasat J-M (2015) Severe sepsis secondary to persistent Lysinibacillus sphaericus, Lysinibacillus fusiformis and Paenibacillus amylolyticus Bacteremia. Int J Infect Dis 35:93–95. https://doi.org/10.1016/j.ijid.2015.04.016

    Article  PubMed  Google Scholar 

  33. Banerjee S, Joshi S (2014) Ultrastructural analysis of calcite crystal patterns formed bybiofilm bacteria associated with cave speleothems. J Microsc Ultrastruct 2:217. https://doi.org/10.1016/j.jmau.2014.06.001

    Article  Google Scholar 

  34. Magnusson J (2002) Weissella soli sp. nov., a lactic acid bacterium isolated from soil. Int J Syst Evol Microbiol 52:831–834. https://doi.org/10.1099/ijs.0.02015-0

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Centro de Microscopia Eletrônica from the State University of Santa Cruz (CME/UESC) for the technical support of EDX analysis.

Funding

This research was funded by the National Council for Scientific and Technological Development (CNPq), Grant Number 435702/2018–1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric de Lima Silva Marques.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 57 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marques, E.L.S., de Cerqueira e Silva, A.B., Dias, J.C.T. et al. Detection of Lactic Acid Bacteria in Metasandstone and Limestone Caves of Chapada Diamantina, Brazil. Indian J Microbiol (2024). https://doi.org/10.1007/s12088-024-01270-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12088-024-01270-1

Keywords

Navigation