Skip to main content
Log in

A Comprehensive Review on Plant-Based Medications and Chemical Approaches for Autism Spectrum Disorders (ASDs) Psychopharmacotherapy

  • ORIGINAL RESEARCH ARTICLE
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Gastrointestinal impairment induced sleep, behavioral and psychiatric disorders were reported in patients of autism spectrum disorders (ASDs). These may be life-long neuro-developmental disorders. Standardized diagnostic criteria for ASDs include: restricted and repetitive behavior, ongoing deficiencies in social interaction and communication. Pro-antioxidant and anti-inflammatory effects of dietry polyphenols/poly-phenol-rich derivatives as bioactive compounds enhanced permeability of blood brain barrier, consequently leads to delay in the onset of ASDs symptoms and can be effectively used in the management of ASDs. During the research on ASDs numerous therapeutic modalities, such as chemical and plant-based therapies, have been investigated. Due to their possible neuro-psychopharmacological benefits, plant-based treatments have attracted interest. These natural source therapies have demonstrated potential in reducing ASDs-related symptoms. Plant-based psycho-pharmaceuticals have been thoroughly investigated, and the investigations have confirmed their therapeutic effects. The therapeutic qualities of plants not only address the complex neurological aspects of ASDs but also provide a comprehensive approach to treatment. These substances may restore neurochemical equilibrium by focusing on particular biochemical pathways associated with the illness. Advancements in pharmacology and neurochemistry have enabled targeted interventions through chemical approaches. The treatment of ASDs approached through a combination of plant-based solutions and chemical methods can be better than one alone. By targeting the restorative properties of both natural compounds and synthesized chemicals, researchers aim to address the diverse range of symptoms and underlying neurobiological abnormalities associated with ASDs. Further clinical studies are required to validate the potential of bioactive molecules scientifically.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Serra D, Almeida LM, Dinis TCP (2019) Polyphenols as food bioactive compounds in the context of Autism spectrum disorders: a critical mini-review. Neurosci Biobehav Rev 102:290–298. https://doi.org/10.1016/j.neubiorev.2019.05.010

    Article  CAS  PubMed  Google Scholar 

  2. Kanner L (1995) Follow-up study of eleven autistic children originally reported in: 1943–1971"LaPsychiatrie de L’enfant 38:421–461

  3. Ferguson BJ, Dovgan K, Takahashi N, Beversdorf DQ (2019) The relationship among gastrointestinal symptoms, problem behaviors, and internalizing symptoms in children and adolescents with autism spectrum disorder. Front Psychiatry 10:194. https://doi.org/10.3389/fpsyt.2019.00194

    Article  PubMed  PubMed Central  Google Scholar 

  4. Maenner MJ, Arneson CL, Levy SE, Kirby RS, Nicholas JS, Durkin MS (2012) Brief report: association between behavioral features and gastrointestinal problems among children with autism spectrum disorder. J Autism Dev Disord 42:1520–1525. https://doi.org/10.1007/s10803-011-1379-6

    Article  PubMed  Google Scholar 

  5. Widiger TA, Costa PT Jr (2013) Personality disorders and the five-factor model of personality: rationale for the third edition. Am Psychol Assoc. https://doi.org/10.1037/13939-000

    Article  Google Scholar 

  6. Elsabbagh M, Divan G, Koh YJ, Kim YS, Kauchali S, Marcín C, Montiel-Nava C, Patel V, Paula CS, Wang C, Yasamy MT (2012) Global prevalence of autism and other pervasive developmental disorders. Autism Res 5:160–179. https://doi.org/10.1002/aur.239

    Article  PubMed  PubMed Central  Google Scholar 

  7. Baxter AJ, Brugha TS, Erskine HE, Scheurer RW, Vos T, Scott JG (2015) The epidemiology and global burden of autism spectrum disorders. Psychol Med 45:601–613. https://doi.org/10.1017/S003329171400172X

    Article  CAS  PubMed  Google Scholar 

  8. Kogan MD, Vladutiu CJ, Schieve LA, Ghandour RM, Blumberg SJ, Zablotsky B, Perrin JM, Shattuck P, Kuhlthau KA, Harwood RL, Lu MC (2018) The prevalence of parent-reported autism spectrum disorder among US children. Pediatr 142:6. https://doi.org/10.1542/peds.2017-4161

    Article  Google Scholar 

  9. Fombonne E (2009) Epidemiology of pervasive developmental disorders. Pediatr Res 65:591–598. https://doi.org/10.1203/PDR.0b013e31819e7203

    Article  PubMed  Google Scholar 

  10. Rabie AH, Saleh AI (2023) A new diagnostic autism spectrum disorder (DASD) strategy using ensemble diagnosis methodology based on blood tests. Health Inf Sci Syst 11:36. https://doi.org/10.1007/s13755-023-00234-x

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hadoush H, Alafeef M, Abdulhay E (2019) Automated identification for autism severity level: EEG analysis using empirical mode decomposition and second order difference plot. Behav Brain Res 362:240–248. https://doi.org/10.1016/j.bbr.2019.01.018

    Article  PubMed  Google Scholar 

  12. First MB, Yousif LH, Clarke DE, Wang PS, Gogtay N, Appelbaum PS (2022) DSM-5-TR: overview of what’s new and what’s changed. WPA 21:2018–2219. https://doi.org/10.1002/wps.20989

    Article  Google Scholar 

  13. Vorstman JAS, Parr JR, Moreno-De-Luca D, Anney RJL, Nurnberger JI Jr, Hallmayer JF (2017) Autism genetics: opportunities and challenges for clinical translation. Nat Rev Genet 18:362–376. https://doi.org/10.1038/nrg.2017.4

    Article  CAS  PubMed  Google Scholar 

  14. Modabbernia A, Velthorst E, Reichenberg A (2017) Environmental risk factors for autism: an evidence-based review of systematic reviews and meta-analyses. Mol Autism 8:1–16. https://doi.org/10.1186/s13229-017-0121-4

    Article  CAS  Google Scholar 

  15. Pugsley K, Scherer SW, Bellgrove MA, Hawi Z (2022) Environmental exposures associated with elevated risk for autism spectrum disorder may augment the burden of deleterious de novo mutations among probands. Mol Psychiatry 27:710–730. https://doi.org/10.1038/s41380-021-01142-w

    Article  CAS  PubMed  Google Scholar 

  16. Allen L, Leon-Attia O, Shaham M, Shefer S, Gabis LV (2020) Autism risk linked to prematurity is more accentuated in girls. PLoS ONE 15:e0236994. https://doi.org/10.1371/journal.pone.0236994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lin P-Y, Chen Y-L, Hsiao RC, Chen H-L, Yen C-F (2023) Risks of attention-deficit/hyperactivity disorder, autism spectrum disorder, and intellectual disability in children delivered by caesarean section: a population-based cohort study. Asian J Psychiatry 80:103334

    Article  Google Scholar 

  18. Shen MD, Piven J (2017) Infant brain and behaviour development in autism. Dialog Clin Neurosci 19:325–333. https://doi.org/10.31887/DCNS.2017

    Article  Google Scholar 

  19. Ratnesh RK, Mehata MS (2018) Tunable single and double emission semiconductor nanocrystal quantum dots: a multianalyte sensor. Method Appl Fluoresc 6:035006. https://doi.org/10.1088/2050-6120/aaba8a

    Article  CAS  Google Scholar 

  20. Gardener H, Spiegelman D, Buka SL (2011) Perinatal and neonatal risk factors for autism: a comprehensive meta-analysis. Pediatr 128:344–355. https://doi.org/10.1542/peds.2010-1036

    Article  Google Scholar 

  21. Wang C, Geng H, Liu W, Zhang G (2017) Prenatal, perinatal, and postnatal factors associated with autism: a meta-analysis. Med (Baltimore) 96:e6696. https://doi.org/10.1097/MD.0000000000006696

    Article  CAS  Google Scholar 

  22. Pender B, Brendel W, Richard F, Summers; Dejong S 2022 Diagnostic and statistical manual of mental disorders fifth edition text revision American psychiatric association publishing, Washington, DC

  23. Gentile S (2014) Risks of neurobehavioral teratogenicity associated with prenatal exposure to valproate monotherapy: a systematic review with regulatory repercussions. CNS Spectr 19:305–315. https://doi.org/10.1017/S1092852913000990

    Article  PubMed  Google Scholar 

  24. Kobayashi T et al (2016) autism spectrum disorder and prenatal exposure to selective serotonin reuptake inhibitors: a systematic review and metaanalysis. Reprod Toxicol 65:170–178. https://doi.org/10.1016/j.reprotox.2016.07.016

    Article  CAS  PubMed  Google Scholar 

  25. Rosen BN et al (2015) Maternal smoking and autism spectrum disorder: a metaanalysis. J Autism Dev Disord 45:1689–1698. https://doi.org/10.1007/s10803-014-2327-z

    Article  PubMed  Google Scholar 

  26. Garg A, Ratnesh RK., Chauhan RK., Mittal N, Shankar H (2022) Current advancement and progress in BioFET: a review, international conference on signal and information processing (IConSIP) IEEE: 1–7 https://doi.org/10.1109/ICoNSIP49665.2022.10007517

  27. Bölte S, Girdler S, Marschik PB (2019) The contribution of environmental exposure to the etiology of autism spectrum disorder. Cell Mol Life Sci 76:1275–1297. https://doi.org/10.1007/s00018-018-2988-4

    Article  CAS  PubMed  Google Scholar 

  28. Gallardo-Carrasco MC, Jiménez-Barbero JA, Bravo-Pastor MDM, Martin-Castillo D, Sánchez-Muñoz M (2022) Serum vitamin D, folate and fatty acid levels in children with autism spectrum disorders: a systematic review and meta-analysis. J Autism Dev Disord 52:4708–4721. https://doi.org/10.1007/s10803-021-05335-8

    Article  PubMed  Google Scholar 

  29. Taleb A, Lin W, Xu X, Zhang G, Qi-G Z, Naveed M, Meng F, Fukunaga K, Han F (2021) Emerging mechanisms of valproic acid-induced neurotoxic events in autism and its implications for pharmacological treatment. Biomed pharmacother 137:111322. https://doi.org/10.1016/j.biopha.2021.111322

    Article  CAS  PubMed  Google Scholar 

  30. Kuo HY, Liu FC (2022) Pathophysiological studies of monoaminergic neurotransmission systems in valproic acid-induced model of autism spectrum disorder. Biomedicines 10:560. https://doi.org/10.3390/biomedicines10030560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sabers A, Bertelsen FC, Scheel-Krüger J, Nyengaard JR, Møller A (2014) Long-term valproic acid exposure increases the number of neocortical neurons in the developing rat brain. a possible new animal model of autism. Neurosci lett 580:12–16. https://doi.org/10.1016/j.neulet.2014.07.036

    Article  CAS  PubMed  Google Scholar 

  32. Wang Z, Hong Y, Zou L, Zhong R, Zhu B, Shen N, Chen W, Lou J, Ke J, Zhang T, Wang W (2014) Reelin gene variants and risk of autism spectrum disorders: an integrated meta-analysis. AJMGB 165:192–200. https://doi.org/10.1002/ajmg.b.32222

    Article  CAS  Google Scholar 

  33. Bartholomeusz HH, Courchesne E, Karns CM (2002) Relationship between head circumference and brain volume in healthy normal toddlers, children, and adults. Neuropediatrics 33:239–241. https://doi.org/10.1055/s-2002-36735

    Article  CAS  PubMed  Google Scholar 

  34. Xu X, Miller EC, Pozzo-Miller L (2014) Dendritic spine dysgenesis in Rett syndrome. Front neuroanat 8:97. https://doi.org/10.3389/fnana.2014.00097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kelleher RJ, Bear MF (2014) The autistic neuron: troubled translation? Cell (2008) 135:401–406. https://doi.org/10.1016/j.cell.2008.10.017

    Article  CAS  Google Scholar 

  36. Gonzales ML, LaSalle JM (2010) The role of MeCP2 in brain development and neurodevelopmental disorders. Curr psychiatry rep 12:127–134. https://doi.org/10.1007/s11920-010-0097-7

    Article  PubMed  PubMed Central  Google Scholar 

  37. Laumonnier F, Nguyen LS, Jolly L, Raynaud M, Gecz J (2014) UPF3B gene and nonsense-mediated mRNA decay in autism spectrum disorders. In: Patel VB, Preedy VR, Martin CR (eds) Comprehensive Guide to Autism. Springer, New York, pp 1663–1678. https://doi.org/10.1007/978-1-4614-4788-7_101

    Chapter  Google Scholar 

  38. Bierne H, Hamon M, Cossart P (2012) Epigenetics and bacterial infections. Cold Spring Harb perspect med 2:a010272. https://doi.org/10.1101/cshperspect.a010272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kawicka A, Regulska-Ilow B (2013) How nutritional status, diet and dietary supplements can affect autism? A review. Rocz 64:1

    CAS  Google Scholar 

  40. Hyman SL, Stewart PA, Schmidt B, Cain U, Lemcke N, Foley JT, Peck R, Clemons T, Reynolds A, Johnson C, Handen B (2012) Nutrient intake from food in children with autism. Pediatrics 130:S145–S153. https://doi.org/10.1542/peds.2012-0900L

    Article  PubMed  PubMed Central  Google Scholar 

  41. Garg A, Ratnesh RK (2022) Solar cell trends, and the future: a review J Pharma Negat Result 13 :2051–2060. https://doi.org/10.47750/pnr.2022.13.S06.268

  42. Tildesley NT, Kennedy DO, Perry EK, Ballard CG, Wesnes KA, Scholey AB (2005) Positive modulation of mood and cognitive performance following administration of acute doses of Salvia lavandulaefolia essential oil to healthy young volunteers. Physiol behav 83:699–709. https://doi.org/10.1016/j.physbeh.2004.09.010

    Article  CAS  PubMed  Google Scholar 

  43. Casano AM, Peri F (2015) Microglia: multitasking specialists of the brain. Dev Cell 32:469–477. https://doi.org/10.1016/j.devcel.2015.01.018

    Article  CAS  PubMed  Google Scholar 

  44. Streit WJ, Mrak RE, Griffin WS (2004) Microglia and neuroinflammation: a pathological perspective. J neuroinflam 1:1–4. https://doi.org/10.1186/1742-2094-1-14

    Article  CAS  Google Scholar 

  45. Kim JW, Hong JY, Bae SM (2018) Microglia and autism spectrum disorder: overview of current evidence and novel immunomodulatory treatment options. Clin Psychopharmacol Neurosci 16:246. https://doi.org/10.9758/cpn.2018.16.3.246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kumar R, Ratnesh RK, Singh J, Kumar A, Chandra R (2024) IoT-driven experimental framework for advancing electrical impedance tomography. J Solid-State Sci Technol 13:027002. https://doi.org/10.1149/2162-8777/ad2331

    Article  Google Scholar 

  47. Bertolino B, Crupi R, Impellizzeri D, Bruschetta G, Cordaro M, Siracusa R, Esposito E, Cuzzocrea S (2017) Beneficial effects of co-ultramicronized palmitoylethanolamide/luteolin in a mouse model of autism and in a case report of autism. CNS Neurosci Ther 23:87–98. https://doi.org/10.1111/cns.12648

    Article  CAS  PubMed  Google Scholar 

  48. Tsilioni I, Taliou A, Francis K, Theoharides TC (2015) Children with autism spectrum disorders, who improved with a luteolin-containing dietary formulation, show reduced serum levels of TNF and IL-6. Transl Psychiatry 5:e647. https://doi.org/10.1038/tp.2015.142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rossignol DA, Frye RE (2014) Evidence linking oxidative stress, mitochondrial dysfunction, and inflammation in the brain of individuals with autism. Front Physiol 5:150. https://doi.org/10.3389/fphys.2014.00150

    Article  PubMed  PubMed Central  Google Scholar 

  50. Schimidt HL, Garcia A, Martins A, Mello-Carpes PB, Carpes FP (2017) Green tea supplementation produces better neuroprotective effects than red and black tea in Alzheimer-like rat model. Food Res Int 100:442–448. https://doi.org/10.1016/j.foodres.2017.07.026

    Article  CAS  PubMed  Google Scholar 

  51. Cabrera C, Artacho R, Giménez R (2006) Beneficial effects of green tea—a review. J Am Coll Nutr 25:79–99. https://doi.org/10.1080/07315724.2006.10719518

    Article  CAS  PubMed  Google Scholar 

  52. Vaidyanathan JB, Walle T (2001) Transport and metabolism of the tea flavonoid (–)-epicatechin by the human intestinal cell line Caco-2. Pharm Res 18:1420–1425. https://doi.org/10.1023/a:1012200805593

    Article  CAS  PubMed  Google Scholar 

  53. Pathak S, Kishore N, Upadhyay G, Ratnesh RK, Mishra R (2021) A compact size planar microstrip-fed patch antenna with hexagonal dgs slot for wlan application. recent trends in electronics and communication, LNEE. Springer. 777:263-271. https://doi.org/10.1007/978-981-16-2761-3_25

  54. Urdaneta KE, Castillo MA, Montiel N, Semprún-Hernández N, Antonucci N, Siniscalco D (2018) Autism spectrum disorders: potential neuro-psychopharmacotherapeutic plant-based drugs. Assay Drug Dev Technol 16:433–444. https://doi.org/10.1089/adt.2018.848

    Article  CAS  PubMed  Google Scholar 

  55. McNamara FN, Randall A, Gunthorpe MJ (2005) Effects of piperine, the pungent component of black pepper, at the human vanilloid receptor (TRPV1). Br J Pharmacol 144:781. https://doi.org/10.1038/sj.bjp.0706040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ornoy A, Weinstein-Fudim L, Ergaz Z (2019) Prevention or amelioration of autism-like symptoms in animal models: will it bring us closer to treating human ASD? Int J Mol Sci 20:1074. https://doi.org/10.3390/ijms20051074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wattanathorn J, Chonpathompikunlert P, Muchimapura S, Priprem A, Tankamnerdthai O (2008) The potential functional food for mood and cognitive disorders. Food Chem Toxicol 46:3106–3110. https://doi.org/10.1016/j.fct.2008.06.014

    Article  CAS  PubMed  Google Scholar 

  58. Al-Askar M, Bhat RS, Selim M, Al-Ayadhi L, El-Ansary, (2017) A Postnatal treatment using curcumin supplements to amend the damage in VPA-induced rodent models of autism. BMC Complement Altern 17:1–1. https://doi.org/10.1186/s12906-017-1763-7

    Article  CAS  Google Scholar 

  59. Jackson SJ, Murphy LL, Venema RC, Singletary KW, Young AJ (2013) Curcumin binds tubulin, induces mitotic catastrophe, and impedes normal endothelial cell proliferation. Food Chem Toxicol 60:431–438. https://doi.org/10.1016/j.fct.2013.08.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Feroe AG, Uppal N, Gutiérrez-Sacristán A, Mousavi S, Greenspun P, Surati R, Kohane IS, Avillach P (2021) Medication use in the management of comorbidities among individuals with autism spectrum disorder from a large nationwide insurance database. JAMA Pediatr 175:957–965. https://doi.org/10.1001/jamapediatrics.2021.1329

    Article  PubMed  Google Scholar 

  61. Aishworiya R, Valica T, Hagerman R, Restrepo B (2022) An update on psychopharmacological treatment of autism spectrum disorder. Neurotherapeutics 19:248–262. https://doi.org/10.1007/s13311-022-01183-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Pertwee RG (2015) Endocannabinoids and their pharmacological actions. Springer Int Publ. https://doi.org/10.1007/978-3-319-20825-1-1

    Article  Google Scholar 

  63. Pertwee RG, Howlett AC, Abood ME, Alexander SP, Di Marzo V, Elphick MR, Greasley PJ, Hansen HS, Kunos G, Mackie K, Mechoulam R (2010) International union of basic and clinical pharmacology. LXXIX. Cannabinoid receptors and their ligands: beyond CB1 and CB2 Pharmacol Rev 62:588–631 https://doi.org/10.1124/pr.110.003004

  64. Siniscalco D, Sapone A, Giordano C, Cirillo A, de Magistris L, Rossi F, Fasano A, Bradstreet JJ, Maione S, Antonucci N (2013) Cannabinoid receptor type 2, but not type 1, is up-regulated in peripheral blood mononuclear cells of children affected by autistic disorders. J Autism Dev Disord 43:2686–2695. https://doi.org/10.3390/ijms18071425

    Article  CAS  PubMed  Google Scholar 

  65. Habib SS, Al-Regaiey K, Bashir S, Iqbal M (2017) Role of endocannabinoids on neuroinflammation in autism spectrum disorder prevention J clin diagn res: JCDR 11:CE01 https://doi.org/10.7860/JCDR/2017/23862.9969

  66. Fu M, Sun ZH, Zuo HC (2010) Neuroprotective effect of piperine on primarily cultured hippocampal neurons. Biol Pharm Bull 33:598–603. https://doi.org/10.1248/bpb.33.598

    Article  CAS  PubMed  Google Scholar 

  67. Vang O, Ahmad N, Baile CA, Baur JA, Brown K, Csiszar A, Das DK, Delmas D, Gottfried C, Lin HY, Ma QY (2011) What is new for an old molecule? Systematic review and recommendations on the use of resveratrol. PLoS ONE 6:e19881. https://doi.org/10.18632/aging.100445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sha H, Ma Q, Jha RK, Xu F, Wang L, Wang Z, Zhao Y, Fan F (2008) Resveratrol ameliorates hepatic injury via the mitochondrial pathway in rats with severe acute pancreatitis. Eur J Pharmacol 601:136–142. https://doi.org/10.1016/j.ejphar.2008.10.017

    Article  CAS  PubMed  Google Scholar 

  69. Herbert MR (2010) Contributions of the environment and environmentally vulnerable physiology to autism spectrum disorders. Curr Opin Neurol 23:103–110. https://doi.org/10.1097/WCO.0b013e328336a01f

    Article  PubMed  Google Scholar 

  70. Kumari K, Tewari N, Mehta MS, Pandey N, Tiwari K, Ratnesh RK, Joshi HC, Pant S (2019) Steady state and time-resolved fluorescence study of 7, 8-Benzoquinoline: reinvestigation of excited state protonation. Journal of Molecular Structure 1180:855-860. https://doi.org/10.1016/j.molstruc.2018.12.013

    Article  CAS  Google Scholar 

  71. Kothiyal SR, Ratnesh RK, Kumar A (2023) Field effect transistor (FET)-sensor for biological applications international conference on device intelligence. Computing and Communication Technologies, (DICCT) IEEE 433–438 https://doi.org/10.1109/DICCT56244.2023.10110155

  72. Bakheet SA, Alzahrani MZ, Ansari MA, Nadeem A, Zoheir KM, Attia SM, Al-Ayadhi LY, Ahmad SF (2017) Resveratrol ameliorates dysregulation of Th1, Th2, Th17, and T regulatory cell-related transcription factor signaling in a BTBR T+ tf/J mouse model of autism. Mol Neurobiol 54:5201–5212. https://doi.org/10.1007/s12035-016-0066-1

    Article  CAS  PubMed  Google Scholar 

  73. Bhandari R, Kuhad A (2017) Resveratrol suppresses neuroinflammation in the experimental paradigm of autism spectrum disorders. Neurochem Int 103:8–23. https://doi.org/10.1016/j.neuint.2016.12.012

    Article  CAS  PubMed  Google Scholar 

  74. Brigida AL, Schultz S, Cascone M, Antonucci N, Siniscalco D (2017) Endocannabinod signal dysregulation in autism spectrum disorders: a correlation link between inflammatory state and neuro-immune alterations. Int J Mol Sci 18:1425. https://doi.org/10.3390/ijms18071425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ude C, Schubert-Zsilavecz M, Wurglics M (2013) Ginkgo biloba extracts: a review of the pharmacokinetics of the active ingredients. Clin Pharmacokinet 52:727–749. https://doi.org/10.1007/s40262-013-0074-5

    Article  CAS  PubMed  Google Scholar 

  76. Fang W, Deng Y, Li Y, Shang E, Fang F, Lv P, Bai L, Qi Y, Yan F, Mao L (2010) Blood brain barrier permeability and therapeutic time window of Ginkgolide B in ischemia–reperfusion injury. Eur J Pharm Sci 39:8–14. https://doi.org/10.1016/j.ejps.2009.10.002

    Article  CAS  PubMed  Google Scholar 

  77. Malishev R, Shaham-Niv S, Nandi S, Kolusheva S, Gazit E, Jelinek R (2017) Bacoside-A, an Indian traditional-medicine substance, inhibits β-amyloid cytotoxicity, fibrillation, and membrane interactions. ACS Chem Neurosci 8:884–891. https://doi.org/10.1021/acschemneuro.6b00438

    Article  CAS  PubMed  Google Scholar 

  78. Russo A, Borrelli F (2005) Bacopa monniera, a reputed nootropic plant: an overview. Phytomedicine 12:305–317. https://doi.org/10.1016/j.phymed.2003.12.008

    Article  CAS  PubMed  Google Scholar 

  79. Gohil KJ, Patel JA (2010) A review on Bacopa monniera: current research and future prospects Int J Green Pharm 4 https://doi.org/10.22377/ijgp.v4i1.111

  80. Uabundit N, Wattanathorn J, Mucimapura S, Ingkaninan K (2010) Cognitive enhancement and neuroprotective effects of Bacopa monnieri in Alzheimer’s disease model. J Ethnopharmacol 127:26–31. https://doi.org/10.1016/j.jep.2009.09.056

    Article  PubMed  Google Scholar 

  81. Shinomol GK, Bharath MS, Muralidhara, (2012) Neuromodulatory propensity of Bacopa monnieri leaf extract against 3-nitropropionic acid-induced oxidative stress: in vitro and in vivo evidences. Neurotox Res 22:102–114. https://doi.org/10.1007/s12640-011-9303-6

    Article  PubMed  Google Scholar 

  82. Holcomb LA, Dhanasekaran M, Hitt AR, Young KA, Riggs M, Manyam BV (2006) Bacopa monniera extract reduces amyloid levels in PSAPP mice. JAD 9:243–251. https://doi.org/10.3233/jad-2006-9303

    Article  PubMed  Google Scholar 

  83. Bhattacharya SK, Bhattacharya A, Kumar A, Ghosal S (2000) Antioxidant activity of Bacopa monniera in rat frontal cortex, striatum and hippocampus. Phytother Res 14:174–179. https://doi.org/10.1002/(SICI)1099-1573(200005)14:33.0.CO;2-O

    Article  CAS  PubMed  Google Scholar 

  84. Al-Ayadhi LY, Elamin NE 2013 Camel milk as a potential therapy as an antioxidant in autism spectrum disorder (ASD) eCAM https://doi.org/10.1155/2013/602834

  85. Kappeler S, Farah Z, Puhan Z (1998) Sequence analysis of camelus dromedarius milk caseins. J Dairy Res 65:209–222. https://doi.org/10.1017/s0022029997002847

    Article  CAS  PubMed  Google Scholar 

  86. Chauhan A, Chauhan V (2006) Oxidative stress in autism. Pathophysiology 13:171–181. https://doi.org/10.1016/j.pathophys.2006.05.007

    Article  CAS  PubMed  Google Scholar 

  87. Theoharides TC, Asadi S, Panagiotidou SA (2012) Case series of a luteolin formulation (NeuroProtek®) in children with autism spectrum disorders. Int J Immunopathol Pharmacol 25:317–323. https://doi.org/10.1177/039463201202500201

    Article  CAS  PubMed  Google Scholar 

  88. Pragnya B, Kameshwari JS, Veeresh B (2014) Ameliorating effect of piperine on behavioral abnormalities and oxidative markers in sodium valproate induced autism in BALB/C mice. Behav Brain Res 270:86–94. https://doi.org/10.1016/j.bbr.2014.04.045

    Article  CAS  PubMed  Google Scholar 

  89. Sandhya T, Sowjanya J, Veeresh B (2012) Bacopa monniera (L.) Wettst ameliorates behavioral alterations and oxidative markers in sodium valproate induced autism in rats. Neurochem Res 37:1121–1131. https://doi.org/10.1007/s11064-012-0717-1

    Article  CAS  PubMed  Google Scholar 

  90. Chandana SR, Behen ME, Juhász C, Muzik O, Rothermel RD, Mangner TJ, Chakraborty PK, Chugani HT, Chugani DC (2005) Significance of abnormalities in developmental trajectory and asymmetry of cortical serotonin synthesis in autism. Int J Dev Neurosci 23:171–182. https://doi.org/10.1016/j.ijdevneu.2004.08.002

    Article  CAS  PubMed  Google Scholar 

  91. Jansson LC, Louhivuori L, Wigren HK, Nordström T, Louhivuori V, Castrén ML, Åkerman KE (2012) Brain-derived neurotrophic factor increases the motility of a particular n-methyl-d-aspartate/GABA-responsive subset of neural progenitor cells. Neuroscience 224:223–234. https://doi.org/10.1016/j.neuroscience.2012.08.038

    Article  CAS  PubMed  Google Scholar 

  92. Posey DJ, Aman MG, McCracken JT, Scahill L, Tierney E, Arnold LE, Vitiello B, Chuang SZ, Davies M, Ramadan Y, Witwer AN (2007) Positive effects of methylphenidate on inattention and hyperactivity in pervasive developmental disorders: an analysis of secondary measures. Biol Psychiatry 61:538–544. https://doi.org/10.1038/tpj.2013.23

    Article  CAS  PubMed  Google Scholar 

  93. Cortese S, Adamo N, Del Giovane C, Mohr-Jensen C, Hayes AJ, Carucci S, Atkinson LZ, Tessari L, Banaschewski T, Coghill D, Hollis C (2018) Comparative efficacy and tolerability of medications for attention-deficit hyperactivity disorder in children, adolescents, and adults: a systematic review and network meta-analysis. Lancet Psychiatry 5:727–738. https://doi.org/10.1016/S2215-0366(18)30269-4

    Article  PubMed  PubMed Central  Google Scholar 

  94. Carmassi C, Palagini L, Caruso D, Masci I, Nobili L, Vita A, Dell’Osso L (2019) Systematic review of sleep disturbances and circadian sleep desynchronization in autism spectrum disorder: toward an integrative model of a self-reinforcing loop. Front Psychiatry 10:366. https://doi.org/10.3389/fpsyt.2019.00366

    Article  PubMed  PubMed Central  Google Scholar 

  95. Rubenstein JL, Merzenich MM (2003) Model of autism: increased ratio of excitation/inhibition in key neural systems. Genes Brain and Behav 2:255–267. https://doi.org/10.1034/j.1601-183x.2003.00037.x

    Article  CAS  Google Scholar 

  96. Hardan AY, Fung LK, Libove RA, Obukhanych TV, Nair S, Herzenberg LA, Frazier TW, Tirouvanziam R (2012) A randomized controlled pilot trial of oral N-acetylcysteine in children with autism. Biol psychiatr 71:956–961. https://doi.org/10.1016/j.biopsych.2012.01.014

    Article  CAS  Google Scholar 

  97. Santos E, Clark C, Biag HMB, Tang SJ, Kim K, Ponzini MD, Schneider A, Giulivi C, Montanaro FAM, Gipe JT-E et al (2023) Open-label sulforaphane trial in FMR1 premutation carriers with fragile-X-associated tremor and ataxia syndrome (FXTAS). Cells 12:2773. https://doi.org/10.3390/cells12242773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Glaze DG, Neul JL, Kaufmann WE, Berry-Kravis E, Condon S, Stoms G, Oosterholt S, Della Pasqua O, Glass L, Jones NE, Percy AK (2019) Double-blind, randomized, placebo-controlled study of trofinetide in pediatric Rett syndrome. Neurology 92:e1912–e1925. https://doi.org/10.1212/WNL.0000000000007316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Fatemi SH, Folsom TD (2011) The role of fragile X mental retardation protein in major mental disorders. Neuropharmacology 60:1221–1226. https://doi.org/10.1016/j.neuropharm.2010.11.011

    Article  CAS  PubMed  Google Scholar 

  100. Hara Y, Ago Y, Taruta A, Hasebe S, Kawase H, Tanabe W, Tsukada S, Nakazawa T, Hashimoto H, Matsuda T, Takuma K (2017) Risperidone and aripiprazole alleviate prenatal valproic acid-induced abnormalities in behaviors and dendritic spine density in mice. Psychopharmacology 234:3217–3228. https://doi.org/10.1007/s00213-017-4703-9

    Article  CAS  PubMed  Google Scholar 

  101. Kim SJ, Shonka S, French WP, Strickland J, Miller L, Stein MA (2017) Dose-response effects of long-acting liquid methylphenidate in children with attention deficit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD): a pilot study. J Autism Dev Disord 47:2307–2313. https://doi.org/10.1007/s10803-017-3125-1

    Article  PubMed  Google Scholar 

  102. Nash K, Carter KJ (2016) Treatment options for the management of pervasive developmental disorders. Int J Psychiatry Med 51:201–210. https://doi.org/10.1177/0091217416636600

    Article  PubMed  Google Scholar 

  103. Floriano PN, Christodoulides N, Miller CS, Ebersole JL, Spertus J, Rose BG, Kinane DF, Novak MJ, Steinhubl SA, S, et al (2009) Use of saliva-based nano-biochip tests for acute myocardial infarction at the point of care: a feasibility study. Clin Chem 55:1530–1538. https://doi.org/10.1373/clinchem.2008.117713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Xie Z, Yin X, Gong B, Nie W, Wu B, Zhang X, Huang J, Zhang P, Zhou Z, Li Z (2015) Salivary microRNAs show potential as a noninvasive biomarker for detecting resectable pancreatic cancer. Cancer Prev Res 8:165. https://doi.org/10.1158/1940-6207.CAPR-14-0192

    Article  CAS  Google Scholar 

  105. A Garg RK Ratnesh (2022)Design and simulation of GaAs/InP and Si/SiC hetrojunction solar cells ICCCES-2022. Lacture notes in electrical engineering (LNEE)Springer https://doi.org/10.1007/978-981-19-7753-4-66

  106. Feng S, Huang S, Lin D, Chen G, Xu Y, Li Y, Huang Z, Pan J, Chen R, Zeng H (2015) Surface-enhanced Raman spectroscopy of saliva proteins for the noninvasive differentiation of benign and malignant breast tumors. Int J Nanomed 10:537–547. https://doi.org/10.2147/IJN.S71811

    Article  CAS  Google Scholar 

  107. Lee Y-C (2021) Diagnostic value of salivary miRNA in head and neck squamous cell cancer: systematic review and meta-analysis. Int J Mol Sci 22:7026. https://doi.org/10.3390/ijms22137026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Setti G, Pezzi ME, Viani MV, Pertinhez TA, Cassi D, Magnoni C, Bellini P, Musolino A, Vescovi P, Meleti M (2020) Salivary microrna for diagnosis of cancer and systemic diseases: a systematic review. Int J Mol Sci 21:1–22. https://doi.org/10.3390/ijms21030907

    Article  CAS  Google Scholar 

  109. Condrat CE, Thompson DC, Barbu MG, Bugnar OL, BA, Cretoiu D, Suciu N, Cretoiu S.M., Voinea SC, (2020) miRNAs as biomarkers in disease latest findings regarding their role in diagnosis and prognosis. Cells 9:276. https://doi.org/10.3390/cells9020276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Brister D, Werner BA, Gideon G, McCarty PJ, Lane A, Burrows BT, McLees S, Adelson PD, Arango JI, Marsh W, Flores A (2022) Central nervous system metabolism in autism, epilepsy and developmental delays: a cerebrospinal fluid analysis. Metabolites 12:371. https://doi.org/10.3390/metabo12050371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Mesleh AG, Abdulla SA, El-Agnaf O (2021) Paving the way toward personalized medicine: current advances and challenges in multi-OMICS approach in autism spectrum disorder for biomarkers discovery and patient stratification. J Pers Med 11:41. https://doi.org/10.3390/jpm11010041

    Article  PubMed  PubMed Central  Google Scholar 

  112. Adams JB, Sorenson JC, Pollard EL, Kirby JK, Audhya T (2021) Evidence-based recommendations for an optimal prenatal supplement for women in the US, part two: Minerals. Nutrients 13:1849. https://doi.org/10.3390/nu13061849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Cabibihan J-J, Javed H, Aldosari M, Frazier TW, Elbashir H (2017) Sensing technologies for autism spectrum disorder screening and intervention. Sensor 17:2–25. https://doi.org/10.3390/s17010046

    Article  Google Scholar 

  114. Pasinszki T, Krebsz M, Tung TT, Losic D (2017) Carbon nanomaterial based biosensors for non-invasive detection of cancer and disease biomarkers for clinical diagnosis. Sensor 17:1919. https://doi.org/10.3390/s17081919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Ngowi EE, Wang Y-Z, Qian L, Helmy ASH, Anyomi B, Li T, Zheng M, Jiang E-S, Duan S-F, Wei J-S, Wu D-D, Ji X-Y (2021) The application of nanotechnology for the diagnosis and treatment of brain diseases and disorders. Front Bioeng Biotechnol 9:629832. https://doi.org/10.3389/fbioe.2021.629832

    Article  PubMed  PubMed Central  Google Scholar 

  116. Alafeef M, Moitra P, Pan D (2020) Nano-enabled sensing approaches for pathologic bacterial detection. Biosens Bioelectron 165:112276

    Article  CAS  PubMed  Google Scholar 

  117. Ivanov YD, Malsagova KA, Goldaeva KV, Pleshakova TO, Shumov ID, Galiullin RA, Kapustina SI, Iourov IY, Vorsanova SG, Ryabtsev SV et al (2022) Silicon-on-insulator-based nanosensor for the revelation of microRNA markers of autism. Genes 13:199. https://doi.org/10.3390/genes13020199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Nájera-Maldonado JM, Salazar R, Alvarez-Fitz P, Acevedo-Quiroz M, Flores-Alfaro E, Hernández-Sotelo D, Espinoza-Rojo M, Ramírez M (2024) Phenolic compounds of therapeutic interest in neuroprotection. J Xenobiot 14:227–246. https://doi.org/10.3390/jox14010014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The Authors would like to thank the department of Pharmaceutical Technology and Electronics and Communication Engineering, Meerut Institute of Engineering and Technology, Mr. Puneet Agarwal (Vice-chairman), Prof. Brijesh Singh (Director), and Prof. Garima Garg and Prof. Neha Mittal HOD’s of Pharmaceutical Technology and Electronics and Communication Engineering respectively, for providing useful infrastructure and support to carry out this research work. Author J. S. acknowledges BHU for providing a seed grant under Ministry of Education (MoE), Govt. of India, Institute of Eminence (IoE), under Dev. Scheme No. 6031.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ratneshwar Kumar Ratnesh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashwlayan, V.D., Ratnesh, R.K., Sharma, D. et al. A Comprehensive Review on Plant-Based Medications and Chemical Approaches for Autism Spectrum Disorders (ASDs) Psychopharmacotherapy. Indian J Microbiol (2024). https://doi.org/10.1007/s12088-024-01265-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12088-024-01265-y

Keywords

Navigation