Skip to main content
Log in

Effect of Sodium Lauryl Sulfate on Sorption of Cells of the Electrogenic Bacterium Strain Micrococcus luteus on Carbon Cloth

  • Original research article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Results of a study into the effect of anionic surfactant sodium lauryl sulfate on the sorption of cells of the electrogenic bacteria strain Micrococcus luteus 1-I on the surface of carbon cloth used as electrodes in microbial fuel cell (MFC) technology are presented. Investigations using spectrophotometry, microscopy and microbiology revealed an increase in the degree of sorption of microbial cells on carbon cloth under the action of sodium lauryl sulfate at concentrations of 10 and 100 mg/l. The sorption of cells did not significantly differ from the control at a surfactant content of 200, 400 and 800 mg/l. It had no negative effect on bacterial growth in the concentration range from 10 to 800 mg/l. Due to the fairly high resistance of the electrogenic strain M. luteus 1-I to sodium lauryl sulfate, a widespread component of wastewater, it may be considered as a prospective bioagent for the treatment of domestic wastewater using MFC technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Pankratova G, Bollella P, Pankratov D, Gorton L (2022) Supercapacitive biofuel cells. Curr Opin Biotechnol 73:179–187. doi:https://doi.org/10.1016/j.copbio.2021.08.008

    Article  CAS  PubMed  Google Scholar 

  2. Dutta S, Patil R, Dey T (2022) Electron transfer-driven single and multi-enzyme biofuel cells for self-powering and energy bioscience. Nano Energy 96:107074. doi:https://doi.org/10.1016/j.nanoen.2022.107074

    Article  CAS  Google Scholar 

  3. Kuo J, Liu D, Wang SH et al (2021) Dynamic changes in Soil Microbial Communities with glucose Enrichment in Sediment Microbial fuel cells. Indian J Microbiol 61:497–505. doi:https://doi.org/10.1007/s12088-021-00959-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kondaveeti S, Bisht A, Pagolu R et al (2022) Mild Alkaline pretreatment of Rice Straw as a feedstock in Microbial Fuel cells for generation of Bioelectricity. Indian J Microbiol 62:447–455. doi:https://doi.org/10.1007/s12088-022-01022-z

    Article  CAS  PubMed  Google Scholar 

  5. Yaqoob AA, Ibrahim MNM, Guerrero-Barajas C (2021) Modern trend of anodes in microbial fuel cells (MFCs): an overview. Environ Technol Innov 23:101579. doi:https://doi.org/10.1016/j.eti.2021.101579

    Article  CAS  Google Scholar 

  6. Jadhav DA, Carmona-Martínez AA, Chendake AD, Pandit S, Pant D (2021a) Modeling and optimization strategies towards performance enhancement of microbial fuel cells. Bioresour Technol 320:124256. doi:10.1016/j.biortech.2020.124256

    Article  CAS  PubMed  Google Scholar 

  7. Jadhav DA, Mungray AK, Arkatkar A, Kumar SS (2021b) Recent advancement in scaling-up applications of microbial fuel cells: from reality to practicability. Sustain Energy Technol Assess 45:101226. doi:10.1016/j.seta.2021b.101226

    Article  Google Scholar 

  8. Ivase TJ-P, Nyakuma BB, Oladokun O, Abu PT, Hassan MN (2020) Review of the principal mechanisms, prospects, and challenges of bioelectrochemical systems. Environ Prog Sustainable Energy 39:e13298. doi:https://doi.org/10.1002/ep.13298

    Article  CAS  Google Scholar 

  9. Ruzgas T, Larpant N, Shafaat A, Sotres J (2019) Wireless, Battery-Less Biosensors based on direct Electron transfer reactions. ChemElectroChem 6:5167. doi:https://doi.org/10.1002/celc.201901015

    Article  CAS  Google Scholar 

  10. Fan X, Zhou Y, Jin X, Song R-B, Li Z, Zhang Q (2021) Carbon material-based anodes in the microbial fuel cells. Carbon Energy 3:449–472. doi:https://doi.org/10.1002/cey2.113

    Article  CAS  Google Scholar 

  11. Konovalova E, Yu, Barbora L, Chizhik KI, Stom DI (2020) Micrococcus luteus and Serratia marcescens, as a new association of bioagents for microbial fuel cells. IOP Conf Ser : Earth and Environ Sci 408:012080. doi:https://doi.org/10.1088/1755-1315/408/1/012080

    Article  Google Scholar 

  12. Kuznetsov AV, Khorina NN, Konovalova E, Yu, Amsheev D, Yu, Ponamoreva ON, Stom DI (2021) Bioelectrochemical processes of oxidation of dicarboxylic amino acids by strain Micrococcus luteus 1-I in a biofuel cell. IOP Conf Ser : Earth and Environ Sci 808:012038. doi:https://doi.org/10.1088/1755-1315/808/1/012038

    Article  Google Scholar 

  13. Hudzicki J (2009) Kirby-Bauer disk diffusion susceptibility test protocol. Am Soc Microbiol 15:55–63

    Google Scholar 

  14. Gross MJ, Logan BE (1995) Influence of different chemical treatments on transport of Alcaligenes paradoxus in porous media. Appl Environ Microbiol 61:1750–1756. doi:https://doi.org/10.1128/aem.61.5.1750-1756.1995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sodagari M, Wang H, Newby BZ, Ju LK (2013) Effect of rhamnolipids on initial attachment of bacteria on glass and octadecyltrichlorosilane-modified glass. Colloids Surf B 103:121–128. doi:https://doi.org/10.1016/j.colsurfb.2012.10.004

    Article  CAS  Google Scholar 

  16. Zhong H, Liu G, Jiang Y, Brusseau ML, Liu Z, Liu Y, Zeng G (2016) Effect of low concentration rhamnolipid on transport of Pseudomonas aeruginosa ATCC 9027 in an ideal porous medium with hydrophilic or hydrophobic surfaces. Colloids Surf B 139:244–248. doi: https://doi.org/10.1016/j.colsurfb.2015.11.024

    Article  CAS  Google Scholar 

  17. Liu G, Zhong H, Jiang Y, Brusseau ML, Huang J, Shi L, Liu Z, Liu Y, Zeng G (2017) Effect of low-concentration rhamnolipid biosurfactant on Pseudomonas aeruginosa transport in natural porous media. Water Resour Res 53:361–375. doi: https://doi.org/10.1002/2016WR019832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li Q, Logan BE (1999) Enhancing bacterial transport for bioaugmentation of aquifers using low ionic strength solutions and surfactants. Water Res 33:1090–1100. doi: https://doi.org/10.1016/S0043-1354(98)00291-7

    Article  CAS  Google Scholar 

  19. Powelson DK, Mills AL (1998) Water saturation and surfactant effects on bacterial transport in sand columns. Soil Sci 163:694–704

    Article  CAS  Google Scholar 

  20. Streger SH, Vainberg S, Dong H, Hatzinger PB (2002) Enhancing transport of Hydrogenophaga flava ENV735 for bioaugmentation of aquifers contaminated with methyl tert-butyl ether. Appl Environ Microbiol 68:5571–5579. https://doi.org/10.1128/АЕМ.68.11.5571-5579.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wu H, Liu X et al (2022) Action modes of surfactants on biodegradation of Wudong low-rank coal by Pseudomonas aeruginosa. PREPRINT (Version 1) available at research square. https://doi.org/10.21203/rs.3.rs-1410150/v1

  22. Stom DI, Konovalova E, Yu, Zhdanova GO, Tolstoy M, Yu, Vyatchina OF (2017) Active sludge and strains isolated from it as bioagents in biofuel cells. 17th International Multidisciplinary Scientific geoconference SGEM 2017 conference proceedings 17:19–26. doi:https://doi.org/10.5593/sgem2017/42/S17.003

Download references

Acknowledgements

The reported study was funded by RFBR and DFG, Project No. 21-54-12022. The authors are grateful to E. Yu. Konovalova for the strain M. luteus 1-i.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. I. Stom.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stom, D.I., Saksonov, M.N., Gavlik, E.I. et al. Effect of Sodium Lauryl Sulfate on Sorption of Cells of the Electrogenic Bacterium Strain Micrococcus luteus on Carbon Cloth. Indian J Microbiol 63, 50–55 (2023). https://doi.org/10.1007/s12088-023-01058-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-023-01058-9

Keywords

Navigation