Skip to main content
Log in

Geobacillus thermoleovorans MTCC 13131: An Amide-Hydrolyzing Thermophilic Bacterium Isolated from a Hot Spring of Manikaran

  • Original research article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Geobacillus thermoleovorans MTCC 13131, an amide hydrolyzing bacteria was isolated from a hot spring in Himachal Pradesh and identified through 16S rRNA gene sequence analysis. The amidase derived from this bacterium exhibited hydrolyzing catalytic ability against aliphatic and aromatic amides. The isolate was characterized for morphological and biochemical properties. Further, the production of amidase enzyme from this isolate was evaluated using approach of one-variable-at-a-time and response surface method. The Response Surface Methodology based study indicated the importance of nitrogen sources and growth period for amidase production. Optimal production was achieved at a temperature 55 °C, and production pH 7.5 in the production medium comprising diammonium hydrogen phosphate (0.4%), peptone (0.45%) and yeast extract (0.3%). The wide substrate affinity of the strain suggests its potential role in biotransformation of amides to corresponding acids of industrial significance along with its strong capacity to degrade the toxic amide in polluted environmental samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ansu K, Poonam S, Chandrika SA, Amit S (2016) Batch and Fed-Batch production of Acetohydroxamic acid using amidase of hyperinduced cells of Rhodococcus pyridinivorans NIT-36. Res J Chem Environ 20(7):35–47

    CAS  Google Scholar 

  2. Mehta PK, Bhatia SK, Bhatia RK, Bhalla TC (2014) Bench scale production of nicotinic acid using a versatile amide-hydrolysing Geobacillus subterraneus RL-2a isolated from thermal spring of Manikaran, India. J Mol Catal B Enzym 105:58–65. https://doi.org/10.1016/j.molcatb.2014.04.001

    Article  CAS  Google Scholar 

  3. Sharma M, Sharma NN, Bhalla TC (2012) Biotransformation of acetamide to acetohydroxamic acid at bench scale using acyl transferase activity of amidase of Geobacillus pallidus BTP-5x MTCC 9225. Indian J Microbiol 52:76–82. https://doi.org/10.1007/s12088-011-0211-5

    Article  PubMed  CAS  Google Scholar 

  4. Kim JS, Patel SK, Tiwari MK, Lai C, Kumar A, Kim YS, Kalia VC, Lee JK (2020) Phe-140 determines the catalytic efficiency of arylacetonitrilase from Alcaligenes faecalis. Int J Mol Sci 21:7859. https://doi.org/10.3390/ijms21217859

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Pandey D, Patel SKS et al (2019) Solvent-tolerant acyltransferase from Bacillus sp. APB-6: purification and characterization. Indian J Microbiol 59(4):500–507. https://doi.org/10.1007/s12088-019-00836-8

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Devi N, Patel SK, Kumar P, Singh A, Thakur N, Lata J, Pandey D, Thakur V, Chand D (2022) Bioprocess scale-up for acetohydroxamic acid production by hyperactive acyltransferase of immobilized Rhodococcus pyridinivorans. Catal Lett 152:944–953. https://doi.org/10.1007/s10562-021-03696-4

    Article  CAS  Google Scholar 

  7. Wu Z, Liu C, Zhang Z, Zheng R, Zheng Y (2020) Amidase as a versatile tool in amide-bond cleavage: from molecular features to biotechnological applications. Biotechnol Adv 43:107574. https://doi.org/10.1016/j.biotechadv.2020.107574

    Article  PubMed  CAS  Google Scholar 

  8. Singh R, Kumar M, Mittal A, Mehta PK (2016) Microbial enzymes: industrial progress in 21st century. 3 Biotech 6:1–15. https://doi.org/10.1007/s13205-016-0485-8

    Article  PubMed  Google Scholar 

  9. Kumar P, Singh S, Mehariya S, Patel SKS, Lee JK, Kalia VC (2014) Ecobiotechnological approach for exploiting the abilities of Bacillus to produce co-polymer of polyhydroxyalkanoate. Indian J Microbiol 54(2):151–157. https://doi.org/10.1007/s12088-014-0457-9

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Patel SKS, Singh M, Kumar P, Purohit HJ, Kalia VC (2012) Exploitation of defined bacterial cultures for production of hydrogen and polyhydroxybutyrate from pea-shells. Biomass Bioenerg 36:218–225. https://doi.org/10.1016/J.BIOMBIOE.2011.10.027

    Article  CAS  Google Scholar 

  11. Cantarella M, Cantarella L, Gallifuoco A, Intellini R, Kaplan O, Spera A, Martínková L (2008) Amidase-catalyzed production of nicotinic acid in batch and continuous stirred membrane reactors. Enz Microbial Technol 42(3):222–229. https://doi.org/10.1016/j.enzmictec.2007.09.012

    Article  CAS  Google Scholar 

  12. Pandey D, Singh R, Chand D (2011) An improved bioprocess for synthesis of acetohydroxamic acid using DTT (dithiothreitol) treated resting cells of Bacillus sp. APB-6. Bioresour Technol 102(11):6579–6586. https://doi.org/10.1016/j.biortech.2011.03.071

    Article  PubMed  CAS  Google Scholar 

  13. Bhatia RK, Bhatia SK, Mehta PK, Bhalla TC (2013) Bench scale production of benzohydroxamic acid using acyl transfer activity of amidase from Alcaligenes sp. MTCC 10674. J Ind Microbiol Biotechnol 40:21–27. https://doi.org/10.1007/s10295-012-1206-x

    Article  PubMed  CAS  Google Scholar 

  14. Singh R, Sharma H, Ganjoo A, Kumar A, Babu V (2020) Novel amidase catalysed process for the synthesis of vorinostat drug. J Appl Microbiol 129:1589–1597. https://doi.org/10.1111/jam.14753

    Article  PubMed  CAS  Google Scholar 

  15. Sharma M, Sharma NN, Bhalla TC (2009) Amidases: versatile enzymes in nature. Rev Environ Sci Biotechnol 8:343–366. https://doi.org/10.1007/s11157-009-9175-x

    Article  CAS  Google Scholar 

  16. Sharma M, Sharma NN, Bhalla TC (2013) Purification studies on a thermo-active amidase of Geobacillus pallidus BTP-5x MTCC 9225 isolated from thermal springs of Tatapani (Himachal Pradesh). Appl Biochem Biotechnol 169(1):1–14. https://doi.org/10.1007/s12010-012-9945-8

    Article  PubMed  CAS  Google Scholar 

  17. Mehta PK, Bhatia SK, Bhatia RK, Bhalla TC (2013) Purification and characterization of a novel thermo-active amidase from Geobacillus subterraneus RL-2a. Extremophiles 17(4):637–648. https://doi.org/10.1007/s00792-013-0547-3

    Article  PubMed  CAS  Google Scholar 

  18. Fu L, Li X, Xu XXJ (2014) Purification and characterization of a thermostable aliphatic amidase from the hyperthermophilic archaeon Pyrococcus yayanosii CH1. Extremophiles 18(2):429–440. https://doi.org/10.1007/s00792-014-0628-y

    Article  PubMed  CAS  Google Scholar 

  19. Wu ZM, Zheng RC, Tang XL, Zheng YG (2017) Identification and characterization of a thermostable and cobalt-dependent amidase from Burkholderia phytofirmans ZJB-15079 for efficient synthesis of (R)-3, 3, 3-trifluoro-2-hydroxy-2-methylpropionic acid. Appl Microbiol Biotechnol 101:1953–1964. https://doi.org/10.1007/s00253-016-7921-x

    Article  PubMed  CAS  Google Scholar 

  20. Mehta PK, Bhatia SK, Bhatia RK, Bhalla TC (2016) Enhanced production of thermostable amidase from Geobacillus subterraneus RL-2a MTCC 11502 via optimization of physicochemical parameters using Taguchi DOE methodology. 3 Biotech 6:1–12. https://doi.org/10.1007/s13205-016-0390-1

    Article  Google Scholar 

  21. Gurme ST, Surwase SN, Patil SA, Jadhav SB, jadhav JP (2013) Optimization of biotransformation of l-tyrosine to l-DOPA by Yarrowia lipolytica-NCIM 3472 using response surface methodology. Indian J Microbiol 53:194–198. https://doi.org/10.1007/s12088-012-0346-z

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Vaidya BK, Mutalik SR, Joshi RM, Nene SN, Kulkarni BD (2009) Enhanced production of amidase from Rhodococcus erythropolis MTCC 1526 by medium optimisation using a statistical experimental design. J Ind Microbiol Biotechnol 36:671–678. https://doi.org/10.1007/s10295-009-0536-9

    Article  PubMed  CAS  Google Scholar 

  23. Thakur N, Patel SK, Kumar P, Singh A, Devi N, Sandeep K, Pandey D, Chand D (2022) Bioprocess for Hyperactive Thermotolerant Aspergillus fumigatus phytase and its application in dephytinization of wheat flour. Catal Lett. https://doi.org/10.1007/s10562-021-03886-0

    Article  Google Scholar 

  24. Singh R, Kim SW, Kumari A, Mehta PK (2022) An overview of microbial α-amylase and recent biotechnological developments. Curr Biotechnol 11(1):11–26. https://doi.org/10.2174/2211550111666220328141044

    Article  Google Scholar 

  25. Fawcett J, Scott J (1960) A rapid and precise method for the determination of urea. J Clin Pathol 13:156–159. https://doi.org/10.1136/jcp.13.2.156

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Porwal S, Kumar T, Lal S, Rani A, Kumar S, Cheema S, Purohit HJ, Sharma R, Patel SK, Kalia VC (2008) Hydrogen and polyhydroxybutyrate producing abilities of microbes from diverse habitats by dark fermentative process. Bioresour Technol 99:5444–5451. https://doi.org/10.1016/j.biortech.2007.11.011

    Article  PubMed  CAS  Google Scholar 

  27. Kumar P, Patel SKS, Lee JK, Kalia VC (2013) Extending the limits of Bacillus for novel biotechnological applications. Biotechnol Adv 31:1543–1561. https://doi.org/10.1016/j.biotechadv.2013.08.007

    Article  PubMed  CAS  Google Scholar 

  28. Patel SK, Kumar P, Mehariya S, Purohit HJ, Lee JK, Kalia VC (2014) Enhancement in hydrogen production by co-cultures of Bacillus and Enterobacter. Int J Hydrog Energy 39:14663–14668. https://doi.org/10.1016/j.ijhydene.2014.07.084

    Article  CAS  Google Scholar 

  29. Wang YS, Xu JM, Zheng RC, Zheng YG, Shen YC (2008) Improvement of amidase production by a newly isolated Delftia tsuruhatensis ZJB-05174 through optimization of culture medium. J Microbiol Biotechnol 18(12):1932–1937. https://doi.org/10.4014/jmb.0800.224

    Article  PubMed  CAS  Google Scholar 

  30. Prabha R, Nigam VK (2021) Improved production of acrylamidase from Bacillus tequilensis through response surface methodology. Biomass Convers Biorefin. https://doi.org/10.1007/s13399-021-01874-3

    Article  Google Scholar 

Download references

Acknowledgements

Dr. Praveen Kumar Mehta is thankful to the Science and Engineering Research Board (SERB) for providing financial support to the laboratory as an Early Carrier Research grant (ECR/2017/000980), New Delhi, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Praveen Kumar Mehta.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 161 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Shahul, R., Singh, R. et al. Geobacillus thermoleovorans MTCC 13131: An Amide-Hydrolyzing Thermophilic Bacterium Isolated from a Hot Spring of Manikaran. Indian J Microbiol 62, 618–626 (2022). https://doi.org/10.1007/s12088-022-01042-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-022-01042-9

Keywords

Navigation