Skip to main content

Advertisement

Log in

Nano-Therapeutics to Treat Acne Vulgaris

  • Review article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Nanotechnology is a novel approach to dermatologic treatment. Nanomaterials are materials typically defined as less than 100 nm in size. As this size approaches molecular dimensions, the chemical and physical properties vastly change due to a relative increase in surface area to volume  ratio. Unique and altered properties ensue, such as carbon becoming an electrical conductant in the nano form, and glass becoming a liquid. The interaction of nanoparticles with biota likewise changes. Novel therapeutics may be possible with the use of nanomaterials. Advantages of nanoparticles include the ability to overcome microbial resistance and potentially induce immunomodulatory effects. Engineered nanomaterials or the development of nano-therapeutics with photo-induced antibacterial propensity and immunomodulatory activities has the potential to open new prospects for the treatment of ubiquitous cutaneous diseases, such as acne vulgaris.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Patel SKS, Kalia VC (2021) Advancements in the nanobiotechnological applications. Indian J Microbiol 61:401–403. https://doi.org/10.1007/s12088-021-00979-7

    Article  PubMed  Google Scholar 

  2. Patel SKS, Lee JK, Kalia VC (2018) Nanoparticles in biological hydrogen production: an overview. Indian J Microbiol 58:8–18. https://doi.org/10.1007/s12088-017-0678-9

    Article  CAS  PubMed  Google Scholar 

  3. Otari SV, Kumar M, Anwar MZ et al (2017) Rapid synthesis and decoration of reduced graphene oxide with gold nanoparticles by thermostable peptides for memory device and photothermal applications. Sci Rep 7:10980. https://doi.org/10.1038/s41598-017-10777-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Patel SKS, Anwar MZ, Kumar A et al (2018) Fe2O3 yolk-shell particles-based laccase biosensor for efficient detection of 2,6-dimethoxyphenol. BiochemEng J132:1–8. https://doi.org/10.1016/j.bej.2017.12.013

    Article  CAS  Google Scholar 

  5. Otari SV, Pawar SH, Patel SKS et al (2017) Canna edulis leaf extract-mediated preparation of stabilized silver nanoparticles: characterization, antimicrobial activity, and toxicity studies. J Microbiol Biotechnol 27:731–738. https://doi.org/10.4014/jmb.1610.10019

    Article  CAS  PubMed  Google Scholar 

  6. Otari SV, Shinde VV, Hui G et al (2019) Biomolecule-entrapped SiO2 nanoparticles for ultrafast green synthesis of silver nanoparticle-decorated hybrid nanostructures as effective catalysts. Ceram Int 45:5876–5882. https://doi.org/10.1016/j.ceramint.2018.12.054

    Article  CAS  Google Scholar 

  7. Kumar A, Kim I-W, Patel SKS et al (2018) Synthesis of protein-inorganic nanohybrids with improved catalytic properties using Co3(PO4)2. Indian J Microbiol 58:100–104. https://doi.org/10.1007/s12088-017-0700-2

    Article  CAS  PubMed  Google Scholar 

  8. Patel SKS, Otari SV, Li J et al (2018) Synthesis of cross-linked protein-metal hybrid nanoflowers and its application in repeated batch decolorization of synthetic dyes. J Hazard Mater 347:442–450. https://doi.org/10.1016/j.jhazmat.2018.01.003

    Article  CAS  PubMed  Google Scholar 

  9. Otari SV, Patel SKS, Kalia VC et al (2019) Antimicrobial activity of biosynthesized silver nanoparticles decorated silica nanoparticles. Indian J Microbiol 59:379–382. https://doi.org/10.1007/s12088-019-00812-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jha D, Pathak R, Thiruveedula PK et al (2017) Multifunctional biosynthesized silver nanoparticles exhibiting excellent antimicrobial potential against multi-drug resistant microbial populations along with remarkable anti-cancerous properties. Mater Sci Eng C 80:659–669. https://doi.org/10.1016/j.msec.2017.07.011

    Article  CAS  Google Scholar 

  11. Otari SV, Patel SKS, Kalia VC et al (2020) One-step hydrothermal synthesis of magnetic rice straw for effective lipase immobilization and its application in esterification reaction. BioresourTechnol 302:122887. https://doi.org/10.1016/j.biortech.2020.122887

    Article  CAS  Google Scholar 

  12. Patel SKS, Kim JH, Kalia VC et al (2019) Antimicrobial activity of amino-derivatized cationic polysaccharides. Indian J Microbiol 59:96–99. https://doi.org/10.1007/s12088-018-0764-7

    Article  CAS  PubMed  Google Scholar 

  13. Patel SKS, Das D, Kim SC et al (2021) Integrating strategies for sustainable conversion of waste biomass into dark-fermentative hydrogen and value-added products. Renew Sustain Energy Rev 150:111491. https://doi.org/10.1016/j.rser.2021.111491

    Article  CAS  Google Scholar 

  14. Patel SKS, Gupta RK, Kumar V et al (2020) Biomethanol production from methane by immobilized co-cultures of methanotrophs. Indian J Microbiol 60:318–324. https://doi.org/10.1007/s12088-020-00883-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kalia VC, Patel SKS, Kang YC et al (2019) Quorum sensing inhibitors as antipathogens: biotechnological applications. Biotechnol Adv 37:68–90. https://doi.org/10.1016/j.biotechadv.2018.11.006

    Article  CAS  PubMed  Google Scholar 

  16. Patel SKS, Lee J-K, Kalia VC (2020) Deploying biomolecules as anti-COVID-19 agents. Indian J Microbiol 60:263–268. https://doi.org/10.1007/s12088-020-00893-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rishi P, Thakur K, Vij S et al (2020) Diet, gut microbiota and COVID-19. Indian J Microbiol 60:420–429. https://doi.org/10.1007/s12088-020-00908-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kalia VC, Patel SKS, Cho B-K et al (2021) Emerging applications of bacteria as anti-tumor agents. Sem Cancer Biol. https://doi.org/10.1016/j.semcancer.2021.05.012

    Article  Google Scholar 

  19. Mohiuddin AK (2019) A Comprehensive Review of Acne Vulgaris. Clin Res Dermatol Open Access, 6: 1–34. https://doi.org/10.15226/2378-1726/6/2/00186

  20. Kumar B, Pathak R, Mary PB et al (2016) New insights into acne pathogenesis: Exploring the role of acne-associated microbial populations DermatologicaSinica New insights into acne pathogenesis: exploring the role of acne-associated microbial populations. Dermatologica Sin 34:67–73. https://doi.org/10.1016/j.dsi.2015.12.004

    Article  Google Scholar 

  21. Liu P-F, Hsieh YD, Lin YC et al (2015) Propionibacterium acnes in the Pathogenesis and Immunotherapy of Acne Vulgaris. Curr Drug Metab 16:245–254. https://doi.org/10.2174/1389200216666150812124801

    Article  CAS  PubMed  Google Scholar 

  22. Alkhawaja E, Alkhawaja B, Hammadi S et al (2020) Antibiotic resistant Propionibacterium acnes among acne patients in Jordan: a cross-sectional study. BMC Dermatol 20:1–9. https://doi.org/10.1186/s12895-020-00108-9

    Article  CAS  Google Scholar 

  23. Sardana K, Verma G (2017) Propionibacterium acnes and the Th1/Th17 Axis, implications in acne pathogenesis and treatment. Indian J Dermatol 62:392–394. https://doi.org/10.4103/ijd.IJD_483_16

    Article  PubMed  PubMed Central  Google Scholar 

  24. Sardana K, Gupta T, Kumar B et al (2016) Cross-sectional pilot study of antibiotic resistance in propionibacterium acnes strains in Indian Acne patients using 16S-RNA polymerase chain reaction: a comparison among treatment modalities including Antibiotics, Benzoyl Peroxide, and Isotretinoin. Indian J Dermatol 61:45–52. https://doi.org/10.4103/0019-5154.174025

    Article  PubMed  PubMed Central  Google Scholar 

  25. Gupta T, Sardana K, Kumar B, Gautam HK (2018) Letter to the editor submitted in response to the extinction of topical erythromycin therapy for acne vulgaris and concern for the future of topical clindamycin. J Dermatolog Treat. https://doi.org/10.1080/09546634.2017.1335852

    Article  PubMed  Google Scholar 

  26. Thorneycroft H, Gollnick H, Schellschmidt I (2004) Superiority of a combined contraceptive containing drospirenone to a triphasic preparation containing norgestimate in acne treatment. Cutis 74:123–130 (PMID: 15379365)

    PubMed  Google Scholar 

  27. Barbieri JS, Mitra N, Margolis DJ et al (2020) Influence of Contraception Class on Incidence and Severity of Acne Vulgaris. Obstet Gynecol 135:1306–1312. https://doi.org/10.1097/AOG.0000000000003880

    Article  PubMed  PubMed Central  Google Scholar 

  28. Antonio JR, Antônio CR, Cardeal IL et al (2014) Nanotechnology in dermatology. An Bras Dermatol 89:126–136. https://doi.org/10.1590/abd1806-4841.10.1590/abd1806-4841.20142228

    Article  PubMed  PubMed Central  Google Scholar 

  29. Gupta S, Bansal R, Gupta S et al (2013) Nanocarriers and nanoparticles for skin care and dermatological treatments. Indian Dermatol Online J 4:267–272. https://doi.org/10.4103/2229-5178.120635

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kim TS, Patel SKS, Selvaraj C et al (2016) A highly efficient sorbitol dehydrogenase from Gluconobacteroxydans G624 and improvement of its stability through immobilization. Sci Rep 6:33438. https://doi.org/10.1038/srep33438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Patel SKS, Choi SH, Kang YC et al (2016) Large-scale aerosol-assisted synthesis of biofriendly Fe2O3 yolk-shell particles: a promising support for enzyme immobilization. Nanoscale 8:6728–6738. https://doi.org/10.1039/C6NR00346J

    Article  CAS  PubMed  Google Scholar 

  32. Anwar MZ, Kim DJ, Kumar A et al (2017) SnO2 hollow nanotubes: a novel and efficient support matrix for enzyme immobilization. Sci Rep 7:15333. https://doi.org/10.1038/s41598-017-15550-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Patel SKS, Choi SH, Kang YC et al (2017) Eco-friendly composite of Fe3O4-reduced graphene oxide particles for efficient enzyme immobilization. ACS Appl Mater Interfaces 9:2213–2222. https://doi.org/10.1021/acsami.6b05165

    Article  CAS  PubMed  Google Scholar 

  34. Patel SKS, Otari SV, Kang YC et al (2017) Protein-inorganic hybrid system for efficient his-tagged enzymes immobilization and its application in L-xylulose production. RSC Adv 7:3488–3494. https://doi.org/10.1039/c6ra24404a

    Article  CAS  Google Scholar 

  35. Kumar A, Patel SKS, Madan B et al (2018) Immobilization of xylanase using a protein-inorganic hybrid system. J Microbiol Biotechnol 28:638–644. https://doi.org/10.4014/jmb.1710.10037

    Article  CAS  PubMed  Google Scholar 

  36. Kumar A, Park GD, Patel SKS et al (2019) SiO2 microparticles with carbon nanotube-derived mesopores as an efficient support for enzyme immobilization. Chem Eng J 359:1252–1264. https://doi.org/10.1016/j.cej.2018.11.052

    Article  CAS  Google Scholar 

  37. Kumar V, Patel SKS, Gupta RK et al (2019) Enhanced saccharification and fermentation of rice straw by reducing the concentration of phenolic compounds using an immobilization enzyme cocktail. Biotechnol J 14:1800468. https://doi.org/10.1002/biot.201800468

    Article  CAS  Google Scholar 

  38. Otari SV, Patel SKS, Kim S-Y et al (2019) Copper ferrite magnetic nanoparticles for the immobilization of enzyme. Indian J Microbiol 59:105–108. https://doi.org/10.1007/s12088-018-0768-3

    Article  CAS  PubMed  Google Scholar 

  39. Patel SKS, Choi H, Lee J-K (2019) Multi-metal based inorganic–protein hybrid system for enzyme immobilization. ACS Sustain Chem Eng 7:13633–13638. https://doi.org/10.1021/acssuschemeng.9b02583

    Article  CAS  Google Scholar 

  40. Patel SKS, Gupta RK, Kumar V et al (2019) Influence of metal ions on the immobilization of β-glucosidase through protein-inorganic hybrids. Indian J Microbiol 59:370–374. https://doi.org/10.1007/s12088-019-0796-z

    Article  PubMed  PubMed Central  Google Scholar 

  41. Patel SKS, Jeon MS, Gupta RK et al (2019) Hierarchical macro-porous particles for efficient whole-cell immobilization: application in bioconversion of greenhouse gases to methanol. ACS Appl Mater Interfaces 11:18968–18977. https://doi.org/10.1021/acsami.9b03420

    Article  CAS  PubMed  Google Scholar 

  42. Pagolu R, Singh R, Shanmugam R et al (2021) Site-directed lysine modification of xylanase for oriented immobilization onto silicon dioxide nanoparticles. Bioresour Technol 331:125063. https://doi.org/10.1016/j.biortech.2021.125063

    Article  CAS  PubMed  Google Scholar 

  43. Patel SKS, Gupta RK, Kim S-Y et al (2021) Rhus vernicifera laccase immobilization on magnetic nanoparticles to improve stability and its potential application in bisphenol A degradation. Indian J Microbiol 61:45–54. https://doi.org/10.1007/s12088-020-00912-4

    Article  CAS  PubMed  Google Scholar 

  44. Mba IE, Nweze EI (2021) Nanoparticles as therapeutic options for treating multidrug-resistant bacteria: research progress, challenges, and prospects. World J MicrobiolBiotechnol 37:1–30. https://doi.org/10.1007/S11274-021-03070-X/TABLES/5

    Article  Google Scholar 

  45. Chauhan I, Yasir M, Verma M, Singh AP (2020) Nanostructured lipid carriers: a groundbreaking approach for transdermal drug delivery. Adv Pharm Bull 10:150. https://doi.org/10.34172/APB.2020.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Forbat E, Al-Niaimi F, Ali FR (2017) Use of nicotinamide in dermatology. Clin Exp Dermatol 42:137–144. https://doi.org/10.1111/CED.13021

    Article  CAS  PubMed  Google Scholar 

  47. Bains P, Kaur M, Kaur J, Sharma S (2018) Nicotinamide: mechanism of action and indications in dermatology. Indian J Dermatol VenereolLeprol 84:234–237. https://doi.org/10.4103/ijdvl.IJDVL_286_17

    Article  Google Scholar 

  48. Abd-allah H, Abdel-aziz RTA, Nasr M (2020) Chitosan nanoparticles making their way to clinical practice: a feasibility study on their topical use for acne treatment. Int J BiolMacromol 156:262–270. https://doi.org/10.1016/j.ijbiomac.2020.04.040

    Article  CAS  Google Scholar 

  49. Tolentino S, Pereira MN, Cunha-filho M et al (2020) Targeted clindamycin delivery to pilosebaceous units by chitosan or hyaluronic acid nanoparticles for improved topical treatment of acne vulgaris. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2020.117295

    Article  PubMed  Google Scholar 

  50. Wijayadi LJ, Rusliati T (2020) Encapsulated lime peel essential oil ( Citrushystrix ) into chitosan nanoparticle: new entity to enhanced effectivity against propionilbacterium acne in vitro. IOP Conf Ser Mater Sci Eng. 852:012016. https://doi.org/10.1088/1757-899X/852/1/012016

    Article  CAS  Google Scholar 

  51. Chakraborty N, Jha D, Gautam HK, Roy I (2020) Peroxidase-like behavior and photothermal effect of chitosan-coated Prussian-blue nanoparticles: dual-modality antibacterial action with enhanced bioaffinity. Mater Adv 1:774–782. https://doi.org/10.1039/d0ma00231c

    Article  CAS  Google Scholar 

  52. Alvi SB, Rajalakshmi PS, Jogdand A et al (2021) Iontophoresis mediated localized delivery of liposomal gold nanoparticles for photothermal and photodynamic therapy of acne. BiomaterSci 9:1421–1430. https://doi.org/10.1039/d0bm01712d

    Article  CAS  Google Scholar 

  53. Suh DH, Park TJ, Jeong JY et al (2021) Photothermal therapy using gold nanoparticles for acne in Asian patients: a preliminary study. DermatolTher 34:e14918. https://doi.org/10.1111/dth.14918

    Article  Google Scholar 

  54. Qin M, Landriscina A, Rosen JM et al (2015) Nitric Oxide-Releasing Nanoparticles Prevent Propionibacteriumacnes-Induced Inflammation by Both Clearing the Organism and Inhibiting Microbial Stimulation of the Innate Immune Response. J Invest Dermatol 135:2723–2731. https://doi.org/10.1038/jid.2015.277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ridolfi DM, Marcato PD, Justo GZ et al (2012) Chitosan-solid lipid nanoparticles as carriers for topical delivery of tretinoin. Colloids Surf B Biointerfaces 93:36–40. https://doi.org/10.1016/j.colsurfb.2011.11.051

    Article  CAS  PubMed  Google Scholar 

  56. Lima FA, Vilela RVR, Oréfice RL et al (2021) Nanostructured lipid carriers enhances the safety profile of tretinoin: in vitro and healthy human volunteers’ studies. Nanomedicine (Lond) 16:1391–1409. https://doi.org/10.2217/NNM-2021-0031

    Article  CAS  Google Scholar 

  57. Ahmad Nasrollahi S, Koohestani F, Naeimifar A et al (2021) Preparation and evaluation of adapalene nanostructured lipid carriers for targeted drug delivery in acne. DermatolTher 34:e14777. https://doi.org/10.1111/DTH.14777

    Article  CAS  Google Scholar 

  58. Baber MS, Ruhi S, Rajendran PS et al (2020) Development and evaluation of a nano particle aloe gel containing azadirachtaindica leaves extract for the treatment of acne vulgaris. Int J Med Toxicol Leg Med 23:47–58. https://doi.org/10.5958/0974-4614.2020.00009.1

    Article  Google Scholar 

  59. Rai N, Shukla TP, Loksh KR, Karole S (2020) Synthesized silver nanoparticle loaded gel of Curcuma Caesia for effective treatment of acne. J Drug Deliv Ther 10:75–82. https://doi.org/10.22270/jddt.v10i6-s.4453

    Article  CAS  Google Scholar 

  60. El-Mahdy M, Mohamed E-El, Saddik M, et al. (2020) Formulation and clinical evaluation of niosomal methylene blue for successful treatment of acne. J Adv Biomed Pharm Sci 3:116-126. https://doi.org/10.21608/jabps.2020.25846.1079

  61. Mohammadi S, Pardakhty A, Khalili M et al (2019) Niosomal benzoyl peroxide and clindamycin lotion versus niosomal clindamycin lotion in treatment of acne vulgaris: A randomized clinical trial. Adv Pharm Bull 9:578–583. https://doi.org/10.15171/apb.2019.066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gupta A, Singh S, Kotla NG, Webster TJ (2014) Formulation and evaluation of a topical niosomal gel containing a combination of benzoyl peroxide and tretinoin for antiacne activity. Int J Nanomedicine 10:171–182. https://doi.org/10.2147/IJN.S70449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

NC is thankful to CSIR for providing Senior Research Fellowship support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hemant K. Gautam.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, N., Narayanan, V. & Gautam, H.K. Nano-Therapeutics to Treat Acne Vulgaris. Indian J Microbiol 62, 167–174 (2022). https://doi.org/10.1007/s12088-022-01001-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-022-01001-4

Keywords

Navigation