Skip to main content
Log in

Antimicrobial and Antioxidant Potential of Vernonia Cinerea Extract Coated AuNPs

  • Original research article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Green synthesis of nanoparticles is an important tool to reduce the harmful effects associated with traditional methods. In the present investigation, we have synthesised gold nanoparticles (AuNPs) using aqueous extract prepared from fresh aerial parts (leaf and stem) of Vernonia cinerea as bioreducing agent. The visual indication of change in colour from pale yellow to brown to ruby-red indicated the successful formation of the AuNPs. Characterization of nanoparticles was carried out by UV–visible spectroscopy, X-ray crystallography (XRD), Transmission electron microscopy (TEM) and Energy dispersive X-ray analysis (EDX). UV–Vis spectra showed a specific peak at 546 nm which was the initial confirmation of the biosynthesized AuNPs. TEM images showed spherical and triangular shape of AuNPs with an average size of 25 nm. From FTIR spectrum, different functional groups were identified that could be responsible for the formation, stabilization, and capping of biosynthesized AuNPs. Aqueous plant extract and biosynthesised AuNPs were separately tested for their antimicrobial activity against six bacterial strains and four fungal strains. Biosynthesised AuNPs (2 mg/ml) showed significantly high zone of inhibition against the selected bacterial strains as compared to the aqueous plant extract. Maximum zone of inhibition (18.2 mm) was observed with AuNPs against Streptococcus pyogenes whereas comparatively less value (12.5 mm) was recorded with the plant extract. Interestingly, the inhibitory activity observed against bacterial strains was even better than ampicillin. Antifungal activity recorded with AuNPs (5 mg/ml) was maximum (17.4 mm) against R. oryzae and it was higher than positive control (17.00 mm) and plant extract (13.2 mm).The present study clearly showed that AuNPs coated with Vernonia cinerea extract were as good as positive control in inhibiting bacterial and fungal growth. In addition, these AuNPs also showed good antioxidant potential which was comparable to ascorbic acid.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Singh S, Madhav NS, Chandra H, Visht S (2020) 5. Nanomedicine strategies: a precise therapeutic approach for disease. In: Predictive intelligence in biomedical and health informatics, pp 91–11. https://doi.org/10.1515/9783110676129-005

  2. Battez AH, González R, Viesca JL, Fernández JE, Fernández JD, Machado A, Riba J (2008) CuO, ZrO2 and ZnO nanoparticles as antiwear additive in oil lubricants. Wear 265(3–4):422–428. https://doi.org/10.1016/j.wear.2007.11.013

    Article  CAS  Google Scholar 

  3. Patel SK, Choi SH, Kang YC, Lee JK (2016) Large-scale aerosol-assisted synthesis of biofriendly Fe2O3 yolk–shell particles: a promising support for enzyme immobilization. Nanoscale 8(12):6728–6738. https://doi.org/10.1039/c6nr00346j

    Article  PubMed  CAS  Google Scholar 

  4. Otari SV, Shinde VV, Hui G, Patel SK, Kalia VC, Kim IW, Lee JK (2019) Biomolecule-entrapped SiO2 nanoparticles for ultrafast green synthesis of silver nanoparticle–decorated hybrid nanostructures as effective catalysts. Ceram Int 45(5):5876–5882. https://doi.org/10.1016/j.ceramint.2018.12.054

    Article  CAS  Google Scholar 

  5. Pagolu R, Singh R, Shanmugam R, Kondaveeti S, Patel SK, Kalia VC, Lee JK (2021) Site-directed lysine modification of xylanase for oriented immobilization onto silicon dioxide nanoparticles. Bioresour Technol 331:125063. https://doi.org/10.1016/j.biortech.2021.125063

    Article  PubMed  CAS  Google Scholar 

  6. Kalia VC, Patel SK, Kang YC, Lee JK (2019) Quorum sensing inhibitors as antipathogens: biotechnological applications. Biotechnol Adv 37(1):68–90. https://doi.org/10.1016/j.biotechadv.2018.11.006

    Article  PubMed  CAS  Google Scholar 

  7. Zhang H, Ma X, Liu Y, Duan N, Wu S, Wang Z, Xu B (2015) Gold nanoparticles enhanced SERS aptasensor for the simultaneous detection of Salmonella typhimurium and Staphylococcus aureus. Biosens Bioelectron 74:872–877. https://doi.org/10.1016/j.bios.2015.07.033

    Article  PubMed  CAS  Google Scholar 

  8. Razack SA, Duraiarasan S (2020) A way to create a sustainable environment: green nanotechnology–with an emphasis on noble metals. In: The ELSI handbook of nanotechnology: risk, safety, ELSI and commercialization, pp 359-425. https://doi.org/10.1002/9781119592990.ch14

  9. Patel SKS, Choi H, Lee J-K (2019) Multimetal-based inorganic-protein hybrid system for enzyme immobilization ACS sustain. Chem Eng 7(16):13633–13638. https://doi.org/10.1021/acssuschemeng.9b02583

    Article  CAS  Google Scholar 

  10. Canaparo R, Foglietta F, Limongi T, Serpe L (2021) Biomedical applications of reactive oxygen species generation by metal nanoparticles. Materials 14(1):53. https://doi.org/10.3390/ma14010053

    Article  CAS  Google Scholar 

  11. Patel SKS, Otari SV, Li J, Kim DR, Kim SC, Cho B-K, Kalia VC, Kang YC, Lee J-K (2018) Synthesis of cross-linked protein-metal hybrid nanoflowers and its application in repeated batch decolorization of synthetic dyes. J Hazard Mater 347:442–450. https://doi.org/10.1016/j.jhazmat

    Article  PubMed  CAS  Google Scholar 

  12. Sweet MJ, Chessher A, Singleton I (2012) Metal-based nanoparticles; size, function, and areas for advancement in applied microbiology. Adv Appl Microbiol 80:113–142. https://doi.org/10.1016/B978-0-12-394381-1.00005-2

    Article  PubMed  CAS  Google Scholar 

  13. Kumar V, Patel SK, Gupta RK, Otari SV, Gao H, Lee JK, Zhang L (2019) Enhanced saccharification and fermentation of rice straw by reducing the concentration of phenolic compounds using an immobilized enzyme cocktail. Biotechnol J 14(6):1800468. https://doi.org/10.1002/biot.201800468

    Article  CAS  Google Scholar 

  14. Mittal AK, Chisti Y, Banerjee UC (2013) Synthesis of metallic nanoparticles using plant extracts. Biotechnol Adv 31(2):346–356. https://doi.org/10.1016/j.biotechadv.2013.01.003

    Article  PubMed  CAS  Google Scholar 

  15. Otari SV, Patel SK, Kalia VC, Lee JK (2020) One-step hydrothermal synthesis of magnetic rice straw for effective lipase immobilization and its application in esterification reaction. Bioresour Technol 302:122887. https://doi.org/10.1016/j.biortech.2020.122887

    Article  PubMed  CAS  Google Scholar 

  16. Shankar SS, Rai A, Ahmad A, Sastry M (2004) Rapid synthesis of Au, Ag, and bimetallic Au core–Ag shell nanoparticles using neem (Azadirachta indica), leaf broth. J Colloid Interf Sci 275:496–502. https://doi.org/10.1016/j.jcis.2004.03.003

    Article  CAS  Google Scholar 

  17. Chen MN, Chan CF, Huang SL, Lin YS (2019) Green biosynthesis of gold nanoparticles using Chenopodium formosanum shell extract and analysis of the particles’ antibacterial properties. J Sci Food Agric 99(7):3693–3702. https://doi.org/10.1002/jsfa.9600

    Article  PubMed  CAS  Google Scholar 

  18. Otari SV, Patel SK, Kalia VC, Kim IW, Lee JK (2019) Antimicrobial activity of biosynthesized silver nanoparticles decorated silica nanoparticles. Indian J Microbiol 59(3):379–382. https://doi.org/10.1007/s12088-019-00812-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Otari SV, Pawar SH, Patel SK, Singh RK, Kim SY, Lee JH, Lee JK (2017) Canna edulis leaf extract-mediated preparation of stabilized silver nanoparticles: characterization, antimicrobial activity, and toxicity studies. J Microbiol Biotechnol 27(4):731–738. https://doi.org/10.4014/jmb.1610.10019

    Article  PubMed  CAS  Google Scholar 

  20. Ellingsen LAW, Hung CR, Majeau-Bettez G, Singh B, Chen Z, Whittingham MS, Stromman AH (2016) Nanotechnology for environmentally sustainable electromobility. Nat Nanotechnol 11(12):1039. https://doi.org/10.1038/nnano.2016.237

    Article  PubMed  CAS  Google Scholar 

  21. Mandhata CP, Sahoo CR, Mahanta CS, Padhy RN (2021) Isolation, biosynthesis and antimicrobial activity of gold nanoparticles produced with extracts of Anabaena spiroides. Bioprocess Biosyst Eng. https://doi.org/10.1007/s00449-021-02544-4

    Article  PubMed  Google Scholar 

  22. Patel SK, Kim JH, Kalia VC, Lee JK (2019) Antimicrobial activity of amino-derivatized cationic polysaccharides. Indian J Microbiol 59(1):96–99. https://doi.org/10.1007/s12088-018-0764-7

    Article  PubMed  CAS  Google Scholar 

  23. Otari SV, Kumar M, Anwar MZ, Thorat ND, Patel SK, Lee D et al (2017) Rapid synthesis and decoration of reduced graphene oxide with gold nanoparticles by thermostable peptides for memory device and photothermal applications. Sci Rep 7(1):1–14. https://doi.org/10.1038/s41598-017-10777-1

    Article  CAS  Google Scholar 

  24. Botteon CEA, Silva LB, Ccana-Ccapatinta GV, Silva TS, Ambrosio SR, Veneziani RCS et al (2021) Biosynthesis and characterization of gold nanoparticles using Brazilian red propolis and evaluation of its antimicrobial and anticancer activities. Sci Rep 11(1):1–16. https://doi.org/10.1038/s41598-021-81281-w

    Article  CAS  Google Scholar 

  25. Patel SK, Choi SH, Kang YC, Lee JK (2017) Eco-friendly composite of Fe3O4-reduced graphene oxide particles for efficient enzyme immobilization. ACS Appl Mater Interfaces 9(3):2213–2222. https://doi.org/10.1021/acsami.6b05165

    Article  CAS  Google Scholar 

  26. Rao M, Ippolito G, Mfinanga S, Ntoumi F, Yeboah-Manu D, Vilaplana C, Maeurer M (2019) Improving treatment outcomes for MDR-TB—novel host-directed therapies and personalised medicine of the future. Int J Infect Dis 80:S62–S67. https://doi.org/10.1016/j.ijid.2019.01.039

    Article  Google Scholar 

  27. Bindhu MR, Umadevi M (2014) Antibacterial activities of green synthesized gold nanoparticles. Mater Lett 120:122–125. https://doi.org/10.1016/j.matlet.2014.01.108

    Article  CAS  Google Scholar 

  28. Patel SKS, Anwar MZ, Kumar A, Otari SV, Pagolu RT, Kim SY, Kim I-W, Lee J-K (2018) Fe2O3 yolk-shell particle-based laccase biosensor for efficient detection of 2,6-dimethoxyphenol. Biochem Eng J 132:1–8. https://doi.org/10.1016/j.bej.2017.12.013

    Article  CAS  Google Scholar 

  29. Patel SK, Lee JK, Kalia VC (2018) Nanoparticles in biological hydrogen production: an overview. Indian J Microbiol 58(1):8–18. https://doi.org/10.1007/s12088-017-0678-9

    Article  PubMed  CAS  Google Scholar 

  30. Alara OR, Abdurahman NH, Ukaegbu CI, Kabbashi NA (2019) Extraction and characterization of bioactive compounds in Vernonia amygdalina leaf ethanolic extract comparing Soxhlet and microwave-assisted extraction techniques. J Taibah Univ Sci 13(1):414–422. https://doi.org/10.1080/16583655.2019.1582460

    Article  Google Scholar 

  31. Leelarungrayub D, Pratanaphon S, Pothongsunun P, Sriboonreung T, Yankai A, Bloomer RJ (2009) Efficacy of Vernonia cinerea for smoking cessation. J Health Res 36:23–31. https://doi.org/10.1016/j.ctim.2018.01.009

    Article  Google Scholar 

  32. Latha RM, Geetha T, Varalakshmi P (1998) Effect of Vernonia cinerea less flower extract in adjuvant-induced arthritis. Gen Pharmacol Vasc Syst 31(4):601–606. https://doi.org/10.1016/S0306-3623(98)00049-4

    Article  CAS  Google Scholar 

  33. Chen X, Zhan ZJ, Yue JM (2006) Sesquiterpenoids from Vernonia cinerea. Nat Prod Res 20(1):31–35. https://doi.org/10.1080/14786410500045598

    Article  PubMed  CAS  Google Scholar 

  34. Youn UJ, Miklossy G, Chai X, Wongwiwatthananukit S, Toyama O, Songsak T, Chang LC (2014) Bioactive sesquiterpene lactones and other compounds isolated from Vernonia cinerea. Fitoterapia 93:194–200. https://doi.org/10.1016/j.fitote.2013.12.013

    Article  PubMed  CAS  Google Scholar 

  35. Singh L, Antil R, Ashmita P, Dahiya P (2020) In-vitro biological activities of Vernonia cinerea (L.). Plant Arch 20(2):4889–4900

    Google Scholar 

  36. Aljabali AA, Akkam Y, Al Zoubi MS, Al-Batayneh KM, Al-Trad B, Abo Alrob O, Evans DJ (2018) Synthesis of gold nanoparticles using leaf extract of Ziziphus zizyphus and their antimicrobial activity. Nanomaterials 8(3):174. https://doi.org/10.3390/nano8030174

    Article  PubMed Central  CAS  Google Scholar 

  37. Mc Farland J (1987) Standardization of bacterial culture for disc diffusion assay. J Am Med Assoc 49:1176–1178

    Google Scholar 

  38. Landage KS, Arabade GK, Khanna P, Bhongale CT (2020) Biological approach to synthesize TiO2 nanoparticles using Staphylococcus aureus for antibacterial and anti-biofilm applications. J Microbiol Exp 8(1):36–43

    Article  Google Scholar 

  39. Bauer AW, Kirby WMM, Sherris JC, Turck M (1966) Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 45(4):493–496

    Article  CAS  Google Scholar 

  40. Blois MS (1958) Antioxidant determinations by the use of a stable free radical. Nature 181(4617):1199–1200

    Article  CAS  Google Scholar 

  41. Shirwaikar A, Shirwaikar A, Rajendran K, Punitha ISR (2006) In vitro antioxidant studies on the benzyl tetra isoquinoline alkaloid berberine. Biol Pharm Bull 29(9):1906–1910. https://doi.org/10.1248/bpb.29.1906

    Article  PubMed  CAS  Google Scholar 

  42. Kumar A, Park GD, Patel SK, Kondaveeti S, Otari S, Anwar MZ et al (2019) SiO2 microparticles with carbon nanotube-derived mesopores as an efficient support for enzyme immobilization. Chem Eng J 359:1252–1264. https://doi.org/10.1016/j.cej.2018.11.052

    Article  CAS  Google Scholar 

  43. Patel SK, Gupta RK, Kim SY, Kim IW, Kalia VC, Lee JK (2021) Rhus vernicifera laccase immobilization on magnetic nanoparticles to improve stability and its potential application in bisphenol a degradation. Indian J Microbiol 61(1):45–54. https://doi.org/10.1007/s12088-020-00912-4

    Article  PubMed  CAS  Google Scholar 

  44. Davis WW, Stout TR (1971) Disc plate method of microbiological antibiotic essay. J Microbiol 22(4):666–670

    CAS  Google Scholar 

  45. Otari SV, Patel SK, Kim SY, Haw JR, Kalia VC, Kim IW, Lee JK (2019) Copper ferrite magnetic nanoparticles for the immobilization of enzyme. Indian J Microbiol 59(1):105–108. https://doi.org/10.1007/s12088-018-0768-3

    Article  PubMed  CAS  Google Scholar 

  46. Patel SK, Jeon MS, Gupta RK, Jeon Y, Kalia VC, Kim SC, Lee JK (2019) Hierarchical macroporous particles for efficient whole-cell immobilization: application in bioconversion of greenhouse gases to methanol. ACS Appl Mater Interfaces 11(21):18968–18977. https://doi.org/10.1021/acsami.9b03420

    Article  PubMed  CAS  Google Scholar 

  47. Rajakumar G, Gomathi T, Abdul Rahuman A, Thiruvengadam M, Mydhili G, Kim SH, Chung IM (2016) Biosynthesis and biomedical applications of gold nanoparticles using Eclipta prostrata leaf extract. Appl Sci 6(8):222

    Article  CAS  Google Scholar 

  48. Das SK, Marsili E (2010) A green chemical approach for the synthesis of gold nanoparticles: characterization and mechanistic aspect. Rev Environ Sci Bio/Technol 9(3):199–204

    Article  CAS  Google Scholar 

  49. Ghosh S, Patil S, Ahire M, Kitture R, Gurav DD, Jabgunde AM, Dhavale DD (2012) Gnidia glauca flower extract mediated synthesis of gold nanoparticles and evaluation of its chemocatalytic potential. J Nanobiotechnol 10(1):17. https://doi.org/10.1186/1477-3155-10-17

    Article  CAS  Google Scholar 

  50. Arbade GK, Jathar S, Tripathi V, Patro TU (2018) Antibacterial, sustained drug release and biocompatibility studies of electrospun poly (ε-caprolactone)/chloramphenicol blend nanofiber scaffolds. Biomed Phys Eng Express 4(4):045011

    Article  Google Scholar 

  51. Arbade GK, Kumar V, Tripathi V, Menon A, Bose S, Patro TU (2019) Emblica officinalis-loaded poly (ε-caprolactone) electrospun nanofiber scaffold as potential antibacterial and anticancer deployable patch. New J Chem 43(19):7427–7440

    Article  CAS  Google Scholar 

  52. Al-Radadi NS (2021) Facile one-step green synthesis of gold nanoparticles (AuNP) using licorice root extract: antimicrobial and anticancer study against HepG2 cell line. Arab J Chem 14(2):102956. https://doi.org/10.1016/j.arabjc.2020.102956

    Article  CAS  Google Scholar 

  53. Kumar KM, Mandal BK, Sinha M, Krishna Kumar V (2012) Terminalia chebula mediated green and rapid synthesis of gold nanoparticles. Spectrochim Acta Part A Molecular Biomol Spectrosc 86:490–494. https://doi.org/10.1016/j.saa.2011.11.001

    Article  CAS  Google Scholar 

  54. Rajamurugan R, Selvaganabathy N, Kumaravel S, Ramamurthy CH, Sujatha V, Suresh KM (2011) Identification, quantification of bioactive constituent’s evaluation of antioxidant and in vivo acute toxicity property from the methanol extract of Vernonia cinerea leaf. Pharm Biol 49:1311–1320. https://doi.org/10.3109/13880209.2011.604334

    Article  PubMed  CAS  Google Scholar 

  55. Gangas P, Aliyu AB, Oyewale AO (2021) GC-MS analysis and antibacterial effects of Vernonia glaberrima n-Hexane extracts alone and in combination with standard antibiotics. J Chem Soc Niger 46(2). https://doi.org/10.46602/jcsn.v46i2.593

  56. Joshi T, Pandey SC, Maiti P, Tripathi M, Paliwal A, Nand M, Chandra S (2021) Antimicrobial activity of methanolic extracts of Vernonia cinerea against Xanthomonas oryzae and identification of their compounds using in silico techniques. PLoS ONE 16(6):e0252759. https://doi.org/10.1371/journal.pone.0252759

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Oueslati MH, Tahar LB, Harrath AH (2020) Catalytic, antioxidant and anticancer activities of gold nanoparticles synthesized by kaempferol glucoside from Lotus leguminosae. Arab J Chem 13(1):3112–3122. https://doi.org/10.1016/j.arabjc.2018.09.003

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are thankful to the Department of Botany and the CIL (central instrumentation laboratory), Maharshi Dayanand University for providing the necessary support to carry out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pushpa Dahiya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 300 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, L., Antil, R. & Dahiya, P. Antimicrobial and Antioxidant Potential of Vernonia Cinerea Extract Coated AuNPs. Indian J Microbiol 61, 506–518 (2021). https://doi.org/10.1007/s12088-021-00976-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-021-00976-w

Keywords

Navigation