Skip to main content
Log in

Application Progress of Deinococcus radiodurans in Biological Treatment of Radioactive Uranium-Containing Wastewater

  • Review article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Radioactive uranium wastewater contains a large amount of radionuclide uranium and other heavy metal ions. The radioactive uranium wastewater discharged into the environment will not only pollute the natural environment, but also threat human health. Therefore, the treatment of radioactive uranium wastewater is a current research focus for many researchers. The treatment in radioactive uranium wastewater mainly includes physical, chemical and biological methods. At present, the using of biological treatment to treat uranium in radioactive uranium wastewater has been gradually shown its superiority and advantages. Deinococcus radiodurans is a famous microorganism with the most radiation resistant to ionizing radiation in the world, and can also resist various other extreme pressures. D. radiodurans can be directly used for the adsorption of uranium in radioactive waste water, and it can also transform other functional genes into D. radiodurans to construct genetically engineered bacteria, and then applied to the treatment of radioactive uranium containing wastewater. Radionuclides uranium in radioactive uranium-containing wastewater treated by D. radiodurans involves a lot of mechanisms. This article reviews currently the application of D. radiodurans that directly or construct genetically engineered bacteria in the treatment of radioactive uranium wastewater and discusses the mechanism of D. radiodurans in bioremediation of uranium. The application of constructing an engineered bacteria of D. radiodurans with powerful functions in uranium-containing wastewater is prospected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Wufuer R, Wei YY, Lin QH, Wang HW, Song WJ, Liu W et al (2017) Uranium bioreduction and biomineralization. Adv Appl Microbiol 101:137–168. https://doi.org/10.1016/bs.aambs.2017.01.003

    Article  PubMed  CAS  Google Scholar 

  2. Dinocourt C, Legrand M, Dublineau I, Lestaevel P (2015) The neurotoxicology of uranium. Toxicology 337:58–71. https://doi.org/10.1016/j.tox.2015.08.004

    Article  PubMed  CAS  Google Scholar 

  3. Liu B, Peng T, Sun H, Yue H (2017) Release behavior of uranium in uranium mill tailings under environmental conditions. J Environ Radioact 171:160–168. https://doi.org/10.1016/j.jenvrad.2017.02.016

    Article  PubMed  CAS  Google Scholar 

  4. Kolhe N, Zinjarde S, Acharya C (2018) Responses exhibited by various microbial groups relevant to uranium exposure. Biotechnol Adv 36(7):1828–1846. https://doi.org/10.1016/j.biotechadv.2018.07.002

    Article  PubMed  CAS  Google Scholar 

  5. Wufuer R, Song W, Zhang D, Pan X, Gadd GM (2018) A survey of uranium levels in urine and hair of people living in a coal mining area in Yili, Xinjiang, China. J Environ Radioact 189:168–174. https://doi.org/10.1016/j.jenvrad.2018.04.009

    Article  PubMed  CAS  Google Scholar 

  6. Kong L, Zhu Y, Wang M, Li Z, Tan Z, Xu R, Tang H, Chang X, Xiong Y, Chen D (2016) Simultaneous reduction and adsorption for immobilization of uranium from aqueous solution by nano-flake Fe-SC. J Hazard Mater 320:435–441. https://doi.org/10.1016/j.jhazmat.2016.08.060

    Article  PubMed  CAS  Google Scholar 

  7. Carugo O (2018) Structural features of uranium-protein complexes. J Inorg Biochem 189:1–6. https://doi.org/10.1016/j.jinorgbio.2018.08.014

    Article  PubMed  CAS  Google Scholar 

  8. Song J, Han B, Song H, Yang J, Zhang L, Ning P, Lin Z (2019) Nonreductive biomineralization of uranium by Bacillus subtilis ATCC-6633 under aerobic conditions. J Environ Radioact 208–209:106027. https://doi.org/10.1016/j.jenvrad.2019.106027

    Article  PubMed  CAS  Google Scholar 

  9. Tapia-Rodriguez A, Tordable-Martinez V, Sun W, Field JA, Sierra-Alvarez R (2011) Uranium bioremediation in continuously fed upflow sand columns inoculated with anaerobic granules. Biotechnol Bioeng 108(11):2583–2591. https://doi.org/10.1002/bit.23225

    Article  PubMed  CAS  Google Scholar 

  10. Maleke M, Williams P, Castillo J, Botes E, Ojo A, DeFlaun M et al (2015) Optimization of a bioremediation system of soluble uranium based on the biostimulation of an indigenous bacterial community. Environ Sci Pollut Res Int 22(11):8442–8450. https://doi.org/10.1007/s11356-014-3980-7

    Article  PubMed  CAS  Google Scholar 

  11. Sharma T, Sharma A, Kaur I, Mahajan RK, Litoria PK, Sahoo SK et al (2019) Uranium distribution in groundwater and assessment of age dependent radiation dose in Amritsar, Gurdaspur and Pathankot districts of Punjab, India. Chemosphere 219:607–616. https://doi.org/10.1016/j.chemosphere.2018.12.039

    Article  PubMed  CAS  Google Scholar 

  12. Riedel T, Kübeck C (2018) Uranium in groundwater-a synopsis based on a large hydrogeochemical data set. Water Res 129:29–38. https://doi.org/10.1016/j.watres.2017.11.001

    Article  PubMed  CAS  Google Scholar 

  13. Erőss A, Csondor K, Izsák B, Vargha M, Horváth Á, Pándics T (2018) Uranium in groundwater-the importance of hydraulic regime and groundwater flow system’s understanding. J Environ Radioact 195:90–96. https://doi.org/10.1016/j.jenvrad.2018.10.002

    Article  PubMed  CAS  Google Scholar 

  14. Kaur S, Mehra R (2019) Toxicological risk assessment of protracted ingestion of uranium in groundwater. Environ Geochem Health 41(2):681–698. https://doi.org/10.1007/s10653-018-0162-4

    Article  PubMed  CAS  Google Scholar 

  15. Liesch T, Hinrichsen S, Goldscheider N (2015) Uranium in groundwater–Fertilizers versus geogenic sources. Sci Total Environ 536:981–995. https://doi.org/10.1016/j.scitotenv.2015.05.133

    Article  PubMed  CAS  Google Scholar 

  16. Ebaid YY, Nasr MM, Santos JKB, Makhlouf O (2020) Behavior of uranium series in groundwater of the Wajid Formation, Wadi AdDawasir, Saudi Arabia. Environ Monitor Assess 192(9):564. https://doi.org/10.1007/s10661-020-08518-5

    Article  CAS  Google Scholar 

  17. Istok JD, Senko JM, Krumholz LR, Watson D, Bogle MA, Peacock A et al (2004) In situ bioreduction of technetium and uranium in a nitrate-contaminated aquifer. Environ Sci Technol 38(2):468–75. https://doi.org/10.1021/es034639p

    Article  PubMed  CAS  Google Scholar 

  18. Lopez AM, Wells A, Fendorf S (2021) Soil and Aquifer properties combine as predictors of groundwater uranium concentrations within the Central Valley, California. Environ Sci Technol 55(1):352–361. https://doi.org/10.1021/acs.est.0c05591

    Article  PubMed  CAS  Google Scholar 

  19. Kong L, Ruan Y, Zheng Q, Su M, Diao Z, Chen D et al (2020) Uranium extraction using hydroxyapatite recovered from phosphorus containing wastewater. J Hazard Mater 382:120784. https://doi.org/10.1016/j.jhazmat.2019.120784

    Article  PubMed  CAS  Google Scholar 

  20. Kelly SD, Kemner KM, Carley J, Criddle C, Jardine PM, Marsh TL et al (2008) Speciation of uranium in sediments before and after in situ biostimulation. Environ Sci Technol 42(5):1558–1564. https://doi.org/10.1021/es071764i

    Article  PubMed  CAS  Google Scholar 

  21. Wu W, Chen D, Li J, Su M, Chen N (2018) Enhanced adsorption of uranium by modified red muds: adsorption behavior study. Environ Sci Pollut Res Int 25(18):18096–18108. https://doi.org/10.1007/s11356-018-2027-x

    Article  PubMed  CAS  Google Scholar 

  22. Baiget M, Constantí M, López MT, Medina F (2013) Uranium removal from a contaminated effluent using a combined microbial and nanoparticle system. New Biotechnol 30(6):788–792. https://doi.org/10.1016/j.nbt.2013.05.003

    Article  CAS  Google Scholar 

  23. Wang XL, Li Y, Huang J, Zhou YZ, Li BL, Liu DB (2019) Efficiency and mechanism of adsorption of low concentration uranium in water by extracellular polymeric substances. J Environ Radioact 197:81–89. https://doi.org/10.1016/j.jenvrad.2018.12.002

    Article  PubMed  CAS  Google Scholar 

  24. Wang T, Zheng X, Wang X, Lu X, Shen Y (2017) Different biosorption mechanisms of Uranium(VI) by live and heat-killed Saccharomyces cerevisiae under environmentally relevant conditions. J Environ Radioact 167:92–99. https://doi.org/10.1016/j.jenvrad.2016.11.018

    Article  PubMed  CAS  Google Scholar 

  25. Choudhary S, Sar P (2011) Uranium biomineralization by a metal resistant Pseudomonas aeruginosa strain isolated from contaminated mine waste. J Hazard Mater 186(1):336–343. https://doi.org/10.1016/j.jhazmat.2010.11.004

    Article  PubMed  CAS  Google Scholar 

  26. Jeong BC, Hawes C, Bonthrone KM, Macaskie LE (1997) Localization of enzymically enhanced heavy metal accumulation by Citrobacter sp. and metal accumulation in vitro by liposomes containing entrapped enzyme. Microbiology (Reading, England) 143(7):2497–507. https://doi.org/10.1099/00221287-143-7-249

    Article  CAS  Google Scholar 

  27. Thornley MJ (2010) Radiation resistance among bacteria. J Appl Bacteriol 26(3):334–345. https://doi.org/10.1111/j.1365-2672.1963.tb04784.x

    Article  Google Scholar 

  28. Daly MJ (2000) Engineering radiation-resistant bacteria for environmental biotechnology. Curr Opin Biotechnol 11(3):280–285. https://doi.org/10.1016/s0958-1669(00)00096-3

    Article  PubMed  CAS  Google Scholar 

  29. Appukuttan D, Rao AS, Apte SK (2006) Engineering of Deinococcus radiodurans R1 for bioprecipitation of uranium from dilute nuclear waste. Appl Environ Microbiol 72(12):7873–7878. https://doi.org/10.1128/AEM.01362-06

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Brim H, McFarlan SC, Fredrickson JK, Minton KW, Zhai M, Wackett LP et al (2000) Engineering Deinococcus radiodurans for metal remediation in radioactive mixed waste environments. Nat Biotechnol 18(1):85–90. https://doi.org/10.1038/71986

    Article  PubMed  CAS  Google Scholar 

  31. Chen TT, Hua W, Zhang XZ, Wang BH, Yang ZS (2017) The effects of pprI gene of Deinococcus radiodurans R1 on acute radiation injury of mice exposed to 60Co γ-ray radiation. Oncotarget 8(2):2008–2019. https://doi.org/10.18632/oncotarget.13893

    Article  PubMed  Google Scholar 

  32. Anderson AW, Nordan HC, Cain RF, Parrish G, Duggan D (1956) Studies on a radio-resistant Micrococcus. I. Isolation, morphology, cultural characteristics, and resistance to gamma radiation

  33. Farci D, Bowler MW, Kirkpatrick J, McSweeney S, Tramontano E (1838) Piano D (2014) New features of the cell wall of the radio-resistant bacterium Deinococcus radiodurans. Biochimica et biophysica acta 7:1978–84. https://doi.org/10.1016/j.bbamem.2014.02.014

    Article  CAS  Google Scholar 

  34. Thompson BG, Murray RG (1981) Isolation and characterization of the plasma membrane and the outer membrane of Deinococcus radiodurans strain Sark. Can J Microbiol 27(7):729–734. https://doi.org/10.1139/m81-111

    Article  PubMed  CAS  Google Scholar 

  35. Wang W, Ma Y, He J, Qi H, Xiao F, He S (2019) Gene regulation for the extreme resistance to ionizing radiation of Deinococcus radiodurans. Gene 715:144008. https://doi.org/10.1016/j.gene.2019.144008

    Article  PubMed  CAS  Google Scholar 

  36. Hua Y, Narumi I, Gao G, Tian B, Satoh K, Kitayama S, Shen B (2003) PprI: a general switch responsible for extreme radioresistance of Deinococcus radiodurans. Biochem Biophys Res Commun 306(2):354–360. https://doi.org/10.1016/s0006-291x(03)00965-3

    Article  PubMed  CAS  Google Scholar 

  37. Agapov AA, Kulbachinskiy AV (2015) Mechanisms of stress resistance and gene regulation in the radioresistant bacterium Deinococcus radiodurans. Biochemistry Biokhimiia 80(10):1201–1216. https://doi.org/10.1134/S0006297915100016

    Article  PubMed  CAS  Google Scholar 

  38. Bauermeister A, Bentchikou E, Moeller R, Rettberg P (2009) Roles of PprA, IrrE, and RecA in the resistance of Deinococcus radiodurans to germicidal and environmentally relevant UV radiation. Arch Microbiol 191(12):913–918. https://doi.org/10.1007/s00203-009-0522-7

    Article  PubMed  CAS  Google Scholar 

  39. Warfel JD, LiCata VJ (2015) Enhanced DNA binding affinity of RecA protein from Deinococcus radiodurans. DNA Repair 31:91–96. https://doi.org/10.1016/j.dnarep.2015.05.002

    Article  PubMed  CAS  Google Scholar 

  40. Ding L, Tan WF, Xie SB, Mumford K, Lv JW, Wang HQ et al (2018) Uranium adsorption and subsequent re-oxidation under aerobic conditions by Leifsonia sp.-coated biochar as green trapping agent. Environ Pollut 242:778–87. https://doi.org/10.1016/j.envpol.2018.07.050

    Article  PubMed  CAS  Google Scholar 

  41. Yang J, Dong FQ, Dai QW, Liu MX, Nie XQ, Zhang D, Ma JL, Zhou X (2015) Biosorption of Radionuclide Uranium by Deinococcus radiodurans. Guang pu xue yu guang pu fen xi = Guang pu 35(4):1010–4

    PubMed  CAS  Google Scholar 

  42. Mumtaz S, Streten C, Parry DL, McGuinness KA, Lu P, Gibb KS (2018) Soil uranium concentration at Ranger Uranium Mine Land Application Areas drives changes in the bacterial community. J Environ Radioact 189:14–23. https://doi.org/10.1016/j.jenvrad.2018.03.003

    Article  PubMed  CAS  Google Scholar 

  43. Devigne A, Mersaoui S, Bouthier-de-la-Tour C, Sommer S, Servant P (2013) The PprA protein is required for accurate cell division of γ-irradiated Deinococcus radiodurans bacteria. DNA Repair 12(4):265–272. https://doi.org/10.1016/j.dnarep.2013.01.004

    Article  PubMed  CAS  Google Scholar 

  44. Brim H, Osborne JP, Kostandarithes HM, Fredrickson JK, Wackett LP, Daly MJ (2006) Deinococcus radiodurans engineered for complete toluene degradation facilitates Cr(VI) reduction. Microbiology (Reading, England) 152(Pt 8):2469–2477. https://doi.org/10.1099/mic.0.29009-0

    Article  CAS  Google Scholar 

  45. Shen J, Schäfer A (2014) Removal of fluoride and uranium by nanofiltration and reverse osmosis: a review. Chemosphere 117:679–691. https://doi.org/10.1016/j.chemosphere.2014.09.090

    Article  PubMed  CAS  Google Scholar 

  46. Misra CS, Mukhopadhyaya R, Apte SK (2014) Harnessing a radiation inducible promoter of Deinococcus radiodurans for enhanced precipitation of uranium. J Biotechnol 189:88–93. https://doi.org/10.1016/j.jbiotec.2014.09.013

    Article  PubMed  CAS  Google Scholar 

  47. Ayangbenro AS, Babalola OO (2017) A new strategy for heavy metal polluted environments: a review of microbial Biosorbents. Int J Environ Res Public Health. https://doi.org/10.3390/ijerph14010094

    Article  PubMed  PubMed Central  Google Scholar 

  48. Ji YQ, Hu YT, Tian Q, Shao XZ, Li JY, Safarikova M et al (2010) Biosorption of strontium ions by magnetically modified yeast cells. Sep Sci Technol 45(10):1499–1504. https://doi.org/10.1080/01496391003705664

    Article  CAS  Google Scholar 

  49. Giese EC (2020) Biosorption as green technology for the recovery and separation of rare earth elements. World J Microbiol Biotechnol 36(4):52. https://doi.org/10.1007/s11274-020-02821-6

    Article  PubMed  CAS  Google Scholar 

  50. Bouzikri S, Ouasfi N, Benzidia N, Salhi A, Bakkas S, Khamliche L (2020) Marine alga “Bifurcaria bifurcata”: biosorption of Reactive Blue 19 and methylene blue from aqueous solutions. Environ Sci Pollut Res Int 27(27):33636–33648. https://doi.org/10.1007/s11356-020-07846-w

    Article  PubMed  CAS  Google Scholar 

  51. Zhao W, Ren B, Hursthouse A, Jiang F (2020) The adsorption of Mn(II) by insolubilized humic acid. Water Sci Technol 82(4):747–758. https://doi.org/10.2166/wst.2020.384

    Article  PubMed  CAS  Google Scholar 

  52. Jin Z, Deng S, Wen Y, Jin Y, Pan L, Zhang Y et al (2019) Application of Simplicillium chinense for Cd and Pb biosorption and enhancing heavy metal phytoremediation of soils. Sci Total Environ 697:134148. https://doi.org/10.1016/j.scitotenv.2019.134148

    Article  PubMed  CAS  Google Scholar 

  53. Peng H, Li D, Ye J, Xu H, Xie W, Zhang Y et al (2019) Biosorption behavior of the Ochrobactrum MT180101 on ionic copper and chelate copper. J Environ Manag 235:224–230. https://doi.org/10.1016/j.jenvman.2019.01.060

    Article  CAS  Google Scholar 

  54. Liu MX, Dong FQ, Zhang W, Kang W, Nie XQ, Wei HF et al (2012) Biosorption of uranium by Deinococcus radiodurans cells under culture. Conditions 535–537:2446–2449. https://doi.org/10.4028/www.scientific.net/AMR.535-537.2446

    Article  CAS  Google Scholar 

  55. Wasito H, Fatoni A, Hermawan D, Susilowati SS (2019) Immobilized bacterial biosensor for rapid and effective monitoring of acute toxicity in water. Ecotoxicol Environ Saf 170:205–209. https://doi.org/10.1016/j.ecoenv.2018.11.141

    Article  PubMed  CAS  Google Scholar 

  56. Kolhe N, Zinjarde S, Acharya C (2020) Removal of uranium by immobilized biomass of a tropical marine yeast Yarrowia lipolytica. J Environ Radioact 223–224:106419. https://doi.org/10.1016/j.jenvrad.2020.106419

    Article  PubMed  CAS  Google Scholar 

  57. Chen C, Hu J, Wang J (2020) Biosorption of uranium by immobilized Saccharomyces cerevisiae. J Environ Radioact 213:106158. https://doi.org/10.1016/j.jenvrad.2020.106158

    Article  PubMed  CAS  Google Scholar 

  58. Qin Y, Dong F, Nie X, Zhang W, Xie JJ, Jo FM (2016) Study on adsorption of uranium by immobilized Deinococcus radioduransand volume reduction. J Funct Mater. https://doi.org/10.3969/j.issn.1001-9731.2016.06.022

    Article  Google Scholar 

  59. Hall CW, Mah TF (2017) Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria. FEMS Microbiol Rev 41(3):276–301. https://doi.org/10.1093/femsre/fux010

    Article  PubMed  CAS  Google Scholar 

  60. Cologgi DL, Speers AM, Bullard BA, Kelly SD, Reguera G (2014) Enhanced uranium immobilization and reduction by Geobacter sulfurreducens biofilms. Appl Environ Microbiol 80(21):6638–6646. https://doi.org/10.1128/AEM.02289-14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Manobala T, Shukla SK, Rao TS, Kumar MD (2019) A new uranium bioremediation approach using radio-tolerant Deinococcus radiodurans biofilm. J Biosci 44(5):122 (PMID: 31719231)

    Article  CAS  Google Scholar 

  62. Hu N, Ding DX, Li SM, Tan X, Li GY, Wang YD et al (2016) Bioreduction of U(VI) and stability of immobilized uranium under suboxic conditions. J Environ Radioact 154:60–67. https://doi.org/10.1016/j.jenvrad.2016.01.020

    Article  PubMed  CAS  Google Scholar 

  63. Zhang C, Dodge CJ, Malhotra SV, Francis AJ (2013) Bioreduction and precipitation of uranium in ionic liquid aqueous solution by Clostridium sp. Biores Technol 136:752–756. https://doi.org/10.1016/j.biortech.2013.03.085

    Article  CAS  Google Scholar 

  64. Orellana R, Leavitt JJ, Comolli LR, Csencsits R, Janot N, Flanagan KA et al (2013) U(VI) reduction by diverse outer surface c-type cytochromes of Geobacter sulfurreducens. Appl Environ Microbiol 79(20):6369–6374. https://doi.org/10.1128/AEM.02551-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Lakaniemi AM, Douglas GB, Kaksonen AH (2019) Engineering and kinetic aspects of bacterial uranium reduction for the remediation of uranium contaminated environments. J Hazard Mater 371:198–212. https://doi.org/10.1016/j.jhazmat.2019.02.074

    Article  PubMed  CAS  Google Scholar 

  66. Fredrickson JK, Kostandarithes HM, Li SW, Plymale AE, Daly MJ (2000) Reduction of Fe(III), Cr(VI), U(VI), and Tc(VII) by Deinococcus radiodurans R1. Appl Environ Microbiol 66(5):2006–2011. https://doi.org/10.1128/aem.66.5.2006-2011.2000

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Luo J, Weber FA, Cirpka OA, Wu WM, Nyman JL, Carley J et al (2007) Modeling in-situ uranium(VI) bioreduction by sulfate-reducing bacteria. J Contam Hydrol 92(1–2):129–148. https://doi.org/10.1016/j.jconhyd.2007.01.004

    Article  PubMed  CAS  Google Scholar 

  68. Peña J, Straub M, Flury V, Loup E, Corcho J, Steinmann P et al (2020) Origin and stability of uranium accumulation-layers in an Alpine histosol. Sci Total Environ 20(727):138368. https://doi.org/10.1016/j.scitotenv.2020.138368

    Article  CAS  Google Scholar 

  69. Newsome L, Morris K, Trivedi D, Bewsher A, Lloyd JR (2015) Biostimulation by glycerol phosphate to precipitate recalcitrant uranium(IV) phosphate. Environ Sci Technol 49(18):11070–11078. https://doi.org/10.1021/acs.est.5b02042

    Article  PubMed  CAS  Google Scholar 

  70. Coelho E, Reis TA, Cotrim M, Rizzutto M, Corrêa B (2020) Bioremediation of water contaminated with uranium using Penicillium piscarium. Biotechnol Prog 36(5):e30322. https://doi.org/10.1002/btpr.3032

    Article  PubMed  CAS  Google Scholar 

  71. Chandwadkar P, Misra HS, Acharya C (2018) Uranium biomineralization induced by a metal tolerant Serratia strain under acid, alkaline and irradiated conditions. Metallomics Integrated Biometal Sci 10(8):1078–1088. https://doi.org/10.1039/c8mt00061a

    Article  CAS  Google Scholar 

  72. Kulkarni S, Misra CS, Gupta A, Ballal A, Apte SK (2016) Interaction of uranium with bacterial cell surfaces: inferences from phosphatase-mediated uranium precipitation. Appl Environ Microbiol 82(16):4965–4974. https://doi.org/10.1128/AEM.00728-16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Kulkarni S, Ballal A, Apte SK (2013) Bioprecipitation of uranium from alkaline waste solutions using recombinant Deinococcus radiodurans. J Hazard Mater 262:853–861. https://doi.org/10.1016/j.jhazmat.2013.09.057

    Article  PubMed  CAS  Google Scholar 

  74. Xu R, Wu K, Han H, Ling Z, Chen Z, Liu P et al (2018) Co-expression of YieF and PhoN in Deinococcus radiodurans R1 improves uranium bioprecipitation by reducing chromium interference. Chemosphere 211:1156–1165. https://doi.org/10.1016/j.chemosphere.2018.08.061

    Article  PubMed  CAS  Google Scholar 

  75. Appukuttan D, Seetharam C, Padma N, Rao AS, Apte SK (2011) PhoN-expressing, lyophilized, recombinant Deinococcus radiodurans cells for uranium bioprecipitation. J Biotechnol 154(4):285–290. https://doi.org/10.1016/j.jbiotec.2011.05.002

    Article  PubMed  CAS  Google Scholar 

  76. Peng GW, Ding DX (2011) Biosorption behavior of U(VI) in wastewater containing U(VI) by Immobilized Saccharomyces. Cerevisiae 335:1489–92. https://doi.org/10.4028/www.scientific.net/AMR.335-336.1489

    Article  CAS  Google Scholar 

  77. Sorokin ND, Afanasova EN (2011) Microbial indication of soils contaminated with industrial emissions. Contemp Probl Ecol 4(5):508–512. https://doi.org/10.1134/S1995425511050092

    Article  Google Scholar 

Download references

Acknowledgements

The financial support from the National Natural Science Foundation of China (CN) (Grants 11705085) and the Hunan Province Natural Science Foundation of China (Grants 2020JJ6050 and 2020JJ4077) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fangzhu Xiao or Shuya He.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Zhu, Q., Luo, J. et al. Application Progress of Deinococcus radiodurans in Biological Treatment of Radioactive Uranium-Containing Wastewater. Indian J Microbiol 61, 417–426 (2021). https://doi.org/10.1007/s12088-021-00969-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-021-00969-9

Keywords

Navigation