Skip to main content
Log in

Research on the effect of Deinococcus radiodurans transformed by dsrA-flr-2 double gene on the enrichment performance of uranium(VI)

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Strong-reducing gene (dsrA) and the fluorine-resistant gene (flr-2) were cloned into D. radiodurans to prepare a recombinant Deino-dsrA-flr-2 strains. Then, the influencing factors of uranium enrichment by Deino-dsrA-flr-2 and its enrichment mechanism were studied. When the initial concentration of uranium was 30 mg/L, the pH was 5, the biomass was 0.016 g and the enrichment time was 75 min, the Deino-dsrA-flr-2 had the best remove effeciency of U(VI). SEM and TEM could clearly observe uranium deposits on the surface of bacteria; EDS also indicated that uranium appeared on the surface of Deino-dsrA-flr-2. Compared with D. radiodurans, Deino-dsrA-flr-2 can better remove uranium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Liu B, Peng T, Sun H, Yue H (2017) Release behavior of uranium in uranium mill tailings under environmental conditions. J Environ Radioact 171:160–168. https://doi.org/10.1016/j.jenvrad.2017.02.016

    Article  CAS  PubMed  Google Scholar 

  2. Chandwadkar P, Misra HS, Acharya C (2018) Uranium biomineralization induced by a metal tolerant Serratia strain under acid, alkaline and irradiated conditions. Metallom Integrat Biomet Sci 10(8):1078–1088. https://doi.org/10.1039/c8mt00061a

    Article  CAS  Google Scholar 

  3. Hu N, Ding DX, Li SM, Tan X, Li GY, Wang YD, Xu F (2016) Bioreduction of U(VI) and stability of immobilized uranium under suboxic conditions. J Environ Radioact 154:60–67. https://doi.org/10.1016/j.jenvrad.2016.01.020

    Article  CAS  PubMed  Google Scholar 

  4. Song S, Wang K, Zhang Y, Wang Y, Zhang C, Wang X, Zhang R, Chen J, Wen T, Wang X (2019) Self-assembly of graphene oxide/PEDOT:PSS nanocomposite as a novel adsorbent for uranium immobilization from wastewater. Environ Pollut 250:196–205. https://doi.org/10.1016/j.envpol.2019.04.020

    Article  CAS  PubMed  Google Scholar 

  5. Zhang S, Wang J, Zhang Y, Ma J, Huang L, Yu S, Chen L, Song G, Qiu M, Wang X (2022) Applications of water-stable metal-organic frameworks in the removal of water pollutants: a review. Environ Pollut 291:118076. https://doi.org/10.1016/j.envpol.2021.118076

    Article  CAS  Google Scholar 

  6. Kolhe N, Zinjarde S, Acharya C (2018) Responses exhibited by various microbial groups relevant to uranium exposure. Biotechnol Adv 36(7):1828–1846. https://doi.org/10.1016/j.biotechadv.2018.07.002

    Article  CAS  PubMed  Google Scholar 

  7. Wufuer R, Wei Y, Lin Q, Wang H, Song W, Liu W, Zhang D, Pan X, Gadd GM (2017) Uranium bioreduction and biomineralization. Adv Appl Microbiol 101:137–168. https://doi.org/10.1016/bs.aambs.2017.01.003

    Article  CAS  PubMed  Google Scholar 

  8. Chen T, Zhang J, Li M, Ge H, Li Y, Duan T, Zhu W (2019) Biomass-derived composite aerogels with novel structure for removal/recovery of uranium from simulated radioactive wastewater. Nanotechnology 30(45):455602. https://doi.org/10.1088/1361-6528/ab3991

    Article  CAS  PubMed  Google Scholar 

  9. Dinocourt C, Legrand M, Dublineau I, Lestaevel P (2015) The neurotoxicology of uranium. Toxicology 337:58–71. https://doi.org/10.1016/j.tox.2015.08.004

    Article  CAS  PubMed  Google Scholar 

  10. Yu S, Pang H, Huang S, Tang H, Wang S, Qiu M, Chen Z, Yang H, Song G, Fu D, Hu B, Wang X (2021) Recent advances in metal-organic framework membranes for water treatment: a review. Sci Total Environ 800:149662. https://doi.org/10.1016/j.scitotenv.2021.149662

    Article  CAS  PubMed  Google Scholar 

  11. Foster RI, Kim KW, Oh MK, Lee KY (2019) Effective removal of uranium via phosphate addition for the treatment of uranium laden process effluents. Water Res 158:82–93. https://doi.org/10.1016/j.watres.2019.04.021

    Article  CAS  PubMed  Google Scholar 

  12. Wang XL, Li Y, Huang J, Zhou YZ, Li BL, Liu DB (2019) Efficiency and mechanism of adsorption of low concentration uranium in water by extracellular polymeric substances. J Environ Radioact 197:81–89. https://doi.org/10.1016/j.jenvrad.2018.12.002

    Article  CAS  PubMed  Google Scholar 

  13. Chang HS, Buettner SW, Seaman JC, Jaffé PR, van Groos PG, Li D, Peacock AD, Scheckel KG, Kaplan DI (2014) Uranium immobilization in an iron-rich rhizosphere of a native wetland plant from the Savannah River Site under reducing conditions. Environ Sci Technol 48(16):9270–9278. https://doi.org/10.1021/es5015136

    Article  CAS  PubMed  Google Scholar 

  14. Yu S, Tang H, Zhang D, Wang S, Qiu M, Song G, Fu D, Hu B, Wang X (2021) MXenes as emerging nanomaterials in water purification and environmental remediation. Sci Total Environ 10(811):152280. https://doi.org/10.1016/j.scitotenv.2021.152280

    Article  CAS  Google Scholar 

  15. Mkandawire M (2013) Biogeochemical behaviour and bioremediation of uranium in waters of abandoned mines. Environ Sci Pollut Res Int 20(11):7740–7767. https://doi.org/10.1007/s11356-013-1486-3

    Article  CAS  PubMed  Google Scholar 

  16. Mumtaz S, Streten C, Parry DL, McGuinness KA, Lu P, Gibb KS (2018) Soil uranium concentration at ranger uranium mine land application areas drives changes in the bacterial community. J Environ Radioact 189:14–23. https://doi.org/10.1016/j.jenvrad.2018.03.003

    Article  CAS  PubMed  Google Scholar 

  17. Wen L, Yue L, Shi Y, Ren L, Chen T, Li N, Zhang S, Yang W, Yang Z (2016) Deinococcus radiodurans pprI expression enhances the radioresistance of eukaryotes. Oncotarget 7(13):15339–15355. https://doi.org/10.18632/oncotarget.8137

    Article  PubMed  PubMed Central  Google Scholar 

  18. Xu R, Wu K, Han H, Ling Z, Chen Z, Liu P, Xiong J, Tian F, Zafar Y, Malik K, Li X (2018) Co-expression of YieF and PhoN in Deinococcus radiodurans R1 improves uranium bioprecipitation by reducing chromium interference. Chemosphere 211:1156–1165. https://doi.org/10.1016/j.chemosphere.2018.08.061

    Article  CAS  PubMed  Google Scholar 

  19. Tapia-Rodriguez A, Tordable-Martinez V, Sun W, Field JA, Sierra-Alvarez R (2011) Uranium bioremediation in continuously fed upflow sand columns inoculated with anaerobic granules. Biotechnol Bioeng 108(11):2583–2591. https://doi.org/10.1002/bit.23225

    Article  CAS  PubMed  Google Scholar 

  20. Abdelouas A, Lutze W, Gong W, Nuttall EH, Strietelmeier BA, Travis BJ (2000) Biological reduction of uranium in groundwater and subsurface soil. Sci Total Environ 250(1–3):21–35. https://doi.org/10.1016/s0048-9697(99)00549-5

    Article  CAS  PubMed  Google Scholar 

  21. Orellana R, Leavitt JJ, Comolli LR, Csencsits R, Janot N, Flanagan KA, Gray AS, Leang C, Izallalen M, Mester T, Lovley DR (2013) U(VI) reduction by diverse outer surface c-type cytochromes of Geobacter sulfurreducens. Appl Environ Microbiol 79(20):6369–6374. https://doi.org/10.1128/aem.02551-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lakaniemi AM, Douglas GB, Kaksonen AH (2019) Engineering and kinetic aspects of bacterial uranium reduction for the remediation of uranium contaminated environments. J Hazard Mater 371:198–212. https://doi.org/10.1016/j.jhazmat.2019.02.074

    Article  CAS  PubMed  Google Scholar 

  23. Fredrickson JK, Kostandarithes HM, Li SW, Plymale AE, Daly MJ (2000) Reduction of Fe(III), Cr(VI), U(VI), and Tc(VII) by Deinococcus radiodurans R1. Appl Environ Microbiol 66(5):2006–2011. https://doi.org/10.1128/aem.66.5.2006-2011.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shen J, Schäfer A (2014) Removal of fluoride and uranium by nanofiltration and reverse osmosis: a review. Chemosphere 117:679–691. https://doi.org/10.1016/j.chemosphere.2014.09.090

    Article  CAS  PubMed  Google Scholar 

  25. Zhang P, He Z, Van Nostrand JD, Qin Y, Deng Y, Wu L, Tu Q, Wang J, Schadt CW, Fields MW, Hazen TC, Arkin AP, Stahl DA, Zhou J (2017) Dynamic succession of groundwater sulfate-reducing communities during prolonged reduction of uranium in a contaminated aquifer. Environ Sci Technol 51(7):3609–3620. https://doi.org/10.1021/acs.est.6b02980

    Article  CAS  PubMed  Google Scholar 

  26. Pan W (2011) Construction of fluorine-resistant genetically engineered bacteria with leaching microorganism Thiobacillus ferrooxidans. University of South China, Master

    Google Scholar 

  27. Kulkarni S, Ballal A, Apte SK (2013) Bioprecipitation of uranium from alkaline waste solutions using recombinant Deinococcus radiodurans. J Hazard Mater 262:853–861. https://doi.org/10.1016/j.jhazmat.2013.09.057

    Article  CAS  PubMed  Google Scholar 

  28. Appukuttan D, Seetharam C, Padma N, Rao AS, Apte SK (2011) PhoN-expressing, lyophilized, recombinant Deinococcus radiodurans cells for uranium bioprecipitation. J Biotechnol 154(4):285–290. https://doi.org/10.1016/j.jbiotec.2011.05.002

    Article  CAS  PubMed  Google Scholar 

  29. Manobala T, Shukla SK, Rao TS, Kumar MD (2019) A new uranium bioremediation approach using radio-tolerant Deinococcus radiodurans biofilm. J Biosci 44 (5)

  30. Baiget M, Constantí M, López MT, Medina F (2013) Uranium removal from a contaminated effluent using a combined microbial and nanoparticle system. New Biotechnol 30(6):788–792. https://doi.org/10.1016/j.nbt.2013.05.003

    Article  CAS  Google Scholar 

  31. Ding L, Tan WF, Xie SB, Mumford K, Lv JW, Wang HQ, Fang Q, Zhang XW, Wu XY, Li M (2018) Uranium adsorption and subsequent re-oxidation under aerobic conditions by Leifsonia sp.—Coated biochar as green trapping agent. Environ Pollut 242(Pt A):778–787. https://doi.org/10.1016/j.envpol.2018.07.050

    Article  CAS  PubMed  Google Scholar 

  32. Wang S, Shi L, Yu S, Pang H, Qiu M, Song G, Fu D, Hu B, Wang X (2022) Effect of Shewanella oneidensis MR-1 on U(VI) sequestration by montmorillonite. J Environ Radioact 242:106798. https://doi.org/10.1016/j.jenvrad.2021.106798

    Article  CAS  PubMed  Google Scholar 

  33. Abostate MA, Saleh Y, Mira H, Amin M, Al Kazindar M, Ahmed BM (2018) Characterization, kinetics and thermodynamics of biosynthesized uranium nanoparticles (UNPs). Artific Cells Nanomed Biotechnol 46(1):147–159. https://doi.org/10.1080/21691401.2017.1301460

    Article  CAS  Google Scholar 

  34. Liu R, Wang H, Han L, Hu B, Qiu M (2021) Reductive and adsorptive elimination of U(VI) ions in aqueous solution by SFeS@Biochar composites. Environ Sci Pollut Res 28(39):55176–55185. https://doi.org/10.1007/s11356-021-14835-0

    Article  CAS  Google Scholar 

  35. Liu F, Hua S, Wang C, Hu B (2022) Insight into the performance and mechanism of persimmon tannin functionalized waste paper for U(VI) and Cr(VI) removal. Chemosphere 287(Pt 3):132199. https://doi.org/10.1016/j.chemosphere.2021.132199

    Article  CAS  PubMed  Google Scholar 

  36. Phyo AK, Jia Y, Tan Q, Sun H, Ruan R (2020) Competitive growth of sulfate-reducing bacteria with bioleaching acidophiles for bioremediation of heap bioleaching residue. Int J Environ Res Public Health 17(8):2715. https://doi.org/10.3390/ijerph17082715

    Article  CAS  PubMed Central  Google Scholar 

  37. Yang H, Liu X, Hao M, Xie Y, Wang X, Tian H, Waterhouse GIN, Kruger PE, Telfer SG, Ma S (2021) Functionalized iron-nitrogen-carbon electrocatalyst provides a reversible electron transfer platform for efficient uranium extraction from seawater. Adv Mater 33(51):e2106621. https://doi.org/10.1002/adma.202106621

    Article  CAS  PubMed  Google Scholar 

  38. Cheng G, Zhang A, Zhao Z, Chai Z, Hu B, Han B, Ai Y, Wang X (2021) Extremely stable amidoxime functionalized covalent organic frameworks for uranium extraction from seawater with high efficiency and selectivity. Sci Bull 66(19):1994–2001. https://doi.org/10.1016/j.scib.2021.05.012

    Article  CAS  Google Scholar 

  39. Weng Y, Li J, Ding X, Wang B, Dai S, Zhou Y, Pang R, Zhao Y, Xu H, Tian B, Hua Y (2020) Functionalized gold and silver bimetallic nanoparticles using Deinococcus radiodurans protein extract mediate degradation of toxic dye malachite green. Int J Nanomed 15:1823–1835. https://doi.org/10.2147/ijn.S236683

    Article  CAS  Google Scholar 

  40. Yang J, Dong FQ, Dai QW, Liu MX, Nie XQ, Zhang D, Ma JL, Zhou X (2015) [Biosorption of radionuclide uranium by Deinococcus radiodurans]. Guang pu xue yu guang pu fen xi = Guang pu 35 (4):1010–1014

  41. Li J, Li Q, Ma X, Tian B, Li T, Yu J, Dai S, Weng Y, Hua Y (2016) Biosynthesis of gold nanoparticles by the extreme bacterium Deinococcus radiodurans and an evaluation of their antibacterial properties. Int J Nanomed 11:5931–5944. https://doi.org/10.2147/ijn.S119618

    Article  CAS  Google Scholar 

  42. Kim HK, Jeong SW, Yang JE, Choi YJ (2019) Highly efficient and stable removal of arsenic by live cell fabricated magnetic nanoparticles. Int J Mole Sci. https://doi.org/10.3390/ijms20143566

    Article  Google Scholar 

  43. Misra CS, Mukhopadhyaya R, Apte SK (2014) Harnessing a radiation inducible promoter of Deinococcus radiodurans for enhanced precipitation of uranium. J Biotechnol 189:88–93. https://doi.org/10.1016/j.jbiotec.2014.09.013

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Hunan Province Natural Science Foundation of China (Grant Numbers 2020JJ6050 and 2020JJ4077).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fangzhu Xiao or Shuya He.

Ethics declarations

Conflict of interest

We declare that no known conflict of interest that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Xie, J., Luo, J. et al. Research on the effect of Deinococcus radiodurans transformed by dsrA-flr-2 double gene on the enrichment performance of uranium(VI). J Radioanal Nucl Chem 331, 2195–2207 (2022). https://doi.org/10.1007/s10967-022-08257-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-022-08257-6

Keywords

Navigation