Skip to main content
Log in

Oxygen Reduction Reaction Affected by Sulfate-Reducing Bacteria: Different Roles of Bacterial Cells and Metabolites

  • Original Article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Sulfate-reducing bacteria (SRB) were found to be capable of tolerating a certain amount of oxygen (O2), but how they affect oxygen reduction reaction (ORR) has not been clear. The present work investigated the impact of SRB on ORR in 3.5 wt% sodium chloride solution with the cyclic voltammetry method. The addition of SRB culture solution hampered both the reduction of O2 to superoxide (O ·−2 ) and hydrogen peroxide (H2O2) to water (H2O), and the influence of SRB metabolites was much larger than that of bacterial cells. Sulfide and extracellular polymeric substances (EPS), typical inorganic and organic metabolic products, had great impact on ORR. Sulfide played an important role in the decrease of cathodic current for H2O2 reduction due to its hydrolysis and chemical reaction activity with H2O2. EPS were sticky, easy to adsorb on the electrode surface and abundant in functional groups, which hindered the transformation of O2 into O ·−2 and favored the reduction of H2O2 to H2O.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kim BH, Lim SS, Daud WR, Gadd GM, Chang IS (2015) The biocathode of microbial electrochemical systems and microbially-influenced corrosion. Bioresour Technol 190:395–401. doi:10.1016/j.biortech.2015.04.084

    Article  CAS  PubMed  Google Scholar 

  2. Bergel A, Féron D, Mollica A (2005) Catalysis of oxygen reduction in PEM fuel cell by seawater biofilm. Electrochem Commun 7:900–904. doi:10.1016/j.elecom.2005.06.006

    Article  CAS  Google Scholar 

  3. De SL, Boeckx P, Verstraete W (2010) Evaluation of biocathodes in freshwater and brackish sediment microbial fuel cells. Appl Microbiol Biotechnol 87:1675–1687. doi:10.1007/s00253-010-2645-9

    Article  Google Scholar 

  4. Guerrini E, Grattieri M, Faggianelli A, Cristiani P, Trasatti S (2015) PTFE effect on the electrocatalysis of the oxygen reduction reaction in membraneless microbial fuel cells. Bioelectrochemistry 106:240–247. doi:10.1016/j.bioelechem.2015.05.008

    Article  CAS  PubMed  Google Scholar 

  5. Debuy S, Pecastaings S, Bergel A, Erable B (2015) Oxygen-reducing biocathodes designed with pure cultures ofmicrobial strains isolated from seawater biofilms. Int Biodeterior Biodegrad 103:16–22. doi:10.1016/j.ibiod.2015.03.028

    Article  CAS  Google Scholar 

  6. Parot S, Vandecandelaere I, Cournet A, Délia ML, Vandamme P, Bergé M, Roques C, Bergel A (2011) Catalysis of the electrochemical reduction of oxygen by bacteria isolated from electro-active biofilms formed in seawater. Bioresour Technol 102:304–311. doi:10.1016/j.biortech.2010.06.157

    Article  CAS  PubMed  Google Scholar 

  7. Erable B, Vandecandelaere I, Faimali M, Delia ML, Etcheverry L, Vandamme P, Bergel A (2010) Marine aerobic biofilm as biocathode catalyst. Bioelectrochemistry 78:51–56. doi:10.1016/j.bioelechem.2009.06.006

    Article  CAS  PubMed  Google Scholar 

  8. Lotowska WA, Rutkowska IA, Seta E, Szaniawska E, Wadas A, Sek S, Raczkowska A, Brzostek K, Kulesza PJ (2016) Bacterial-biofilm enhanced design for improved electrocatalytic reduction of oxygen in neutral medium. Electrochim Acta 213:314–323. doi:10.1016/j.electacta.2016.07.117

    Article  CAS  Google Scholar 

  9. Wu J, Wang P, Zhang D, Chen S, Sun Y, Wu J (2016) Catalysis of oxygen reduction reaction by an iron-reducing bacterium isolated from marine corrosion product layers. J Electroanal Chem 774:83–87. doi:10.1016/j.jelechem.2016.04.053

    Article  CAS  Google Scholar 

  10. Hardy JA, Hamilton WA, Hardy JA, Hamilton WA (1981) The oxygen tolerance of sulfate-reducing bacteria isolated from North Sea waters. Curr Microbiol 6:259–262. doi:10.1007/BF01566873

    Article  CAS  Google Scholar 

  11. Sigalevich P, Cohen Y (2000) Oxygen-dependent growth of the sulfate-reducing bacterium Desulfovibrio oxyclinae in coculture with Marinobacter sp. Strain MB in an aerated sulfate-depleted chemostat. Appl Environ Microbiol 66:5019–5023. doi:10.1128/AEM.66.5019-5023.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dolla A, Fournier M, Dermoun Z (2006) Oxygen defense in sulfate-reducing bacteria. J Biotechnol 126:87–100. doi:10.1016/j.jbiotec.2006.03.041

    Article  CAS  PubMed  Google Scholar 

  13. Fareleira P, Santos BS, Antonio C, Xavier AV, Santos H, Legall J, Moradas-Ferreira P (2003) Response of a strict anaerobe to oxygen: survival strategies in Desulfovibrio gigas. Microbiology 149:1513–1522. doi:10.1099/mic.0.26155-0

    Article  CAS  PubMed  Google Scholar 

  14. Lumppio HL, Shenvi NV, Summers AO, Voordouw G, Kurtz D Jr (2001) Rubrerythrin and rubredoxin oxidoreductase in desulfovibrio vulgaris: a novel oxidative stress protection system. J Bacteriol 183:101–108. doi:10.1128/JB.183.1.101-108.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yazdi AZ, Roberts EPL, Sundararaj U (2016) Nitrogen/sulfur co-doped helical graphene nanoribbons for efficient oxygen reduction in alkaline and acidic electrolytes. Carbon 100:99–108. doi:10.1016/j.carbon.2015.12.096

    Article  Google Scholar 

  16. Shao M, Chang Q, Dodelet JP, Chenitz R (2016) Recent advances in electrocatalysts for oxygen reduction reaction. Chem Rev 116:3594–3657. doi:10.1021/acs.chemrev.5b00462

    Article  CAS  PubMed  Google Scholar 

  17. Duan J, Wu S, Zhang X, Huang G, Du M, Hou B (2008) Corrosion of carbon steel influenced by anaerobic biofilm in natural seawater. Electrochim Acta 54:22–28. doi:10.1016/j.electacta.2008.04.085

    Article  CAS  Google Scholar 

  18. Chan KY, Xu LC, Fang HH (2002) Anaerobic electrochemical corrosion of mild steel in the presence of extracellular polymeric substances produced by a culture enriched in sulfate-reducing bacteria. Environ Sci Technol 36:1720–1727. doi:10.1021/es011187c

    Article  CAS  PubMed  Google Scholar 

  19. Wu J, Wang Y, Zhang D, Hou B (2011) Studies on the electrochemical reduction of oxygen catalyzed by reduced graphene sheets in neutral media. J Power Sources 196:1141–1144. doi:10.1016/j.jpowsour.2010.07.087

    Article  CAS  Google Scholar 

  20. Kuang F, Wang J, Yan L, Zhang D (2007) Effects of sulfate-reducing bacteria on the corrosion behavior of carbon steel. Electrochim Acta 52:6084–6088. doi:10.1016/j.electacta.2007.03.041

    Article  CAS  Google Scholar 

  21. Alper E, Ozturk S (1985) Kinetics of oxidation of aqueous sodium sulphide solutions by gaseous oxygen in a stirred cell reactor. Chem Eng Commun 36:343–349. doi:10.1080/00986448508911264

    Article  CAS  Google Scholar 

  22. Cline JD, Richards FA (1969) Oxygenation of hydrogen sulfide in seawater at constant salinity, temperature and pH. Environ Sci Technol 3:838–843. doi:10.1021/es60032a004

    Article  CAS  Google Scholar 

  23. Kruusenberg I, Alexeyeva N, Tammeveski K (2009) The pH-dependence of oxygen reduction on multi-walled carbon nanotube modified glassy carbon electrodes. Carbon 47:651–658. doi:10.1016/j.carbon.2008.10.032

    Article  CAS  Google Scholar 

  24. Takenaka N, Furuya S, Sato K, Bandow H, Maeda Y, Furukawa Y (2003) Rapid reaction of sulfide with hydrogen peroxide and formation of different final products by freezing compared to those in solution. Int J Chem Kinet 35:198–205. doi:10.1002/kin.10118

    Article  CAS  Google Scholar 

  25. Xue SK, Chen S (1999) Surface oxidation for reducing ammonia and hydrogen sulfide emissions from dairy manure storage. T ASAE 42:1401–1408. doi:10.1303/2013.13303

    Article  CAS  Google Scholar 

  26. Bao Q, Zhang D, Lv D, Wang P (2012) Effects of two main metabolites of sulphate-reducing bacteria on the corrosion of Q235 steels in 3.5 wt% NaCl media. Corros Sci 65:405–413. doi:10.1016/j.corsci.2012.08.044

    Article  CAS  Google Scholar 

  27. Zinkevich V, Bogdarina I, Kang H, Hill MAW, Tapper R, Beech IB (1996) Characterisation of exopolymers produced by different isolates of marine sulphate-reducing bacteria. Int Biodeterior Biodegrad 37:163–172. doi:10.1016/S0964-8305(96)00025-X

    Article  CAS  Google Scholar 

  28. Zhang D, Wang J, Pan X (2006) Cadmium sorption by EPSs produced by anaerobic sludge under sulfate-reducing conditions. J Hazard Mater 138:589–593. doi:10.1016/j.jhazmat.2006.05.092

    Article  CAS  PubMed  Google Scholar 

  29. Beech IB, Cheung CWS (1995) Interactions of exopolymers produced by sulphate-reducing bacteria with metal ions. Int Biodeterior Biodegrad 35:59–72. doi:10.1016/0964-8305(95)00082-G

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was financially supported by the National Key Research and Development Program of China (2016YFB0300604 and 2014CB643304), Shandong Provincial Natural Science Foundation (BS2015HZ018), and the Science and Technology Basic Research Program of Qingdao (15-9-1-54-jch).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiajia Wu or Dun Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Liu, H., Wang, P. et al. Oxygen Reduction Reaction Affected by Sulfate-Reducing Bacteria: Different Roles of Bacterial Cells and Metabolites. Indian J Microbiol 57, 344–350 (2017). https://doi.org/10.1007/s12088-017-0667-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-017-0667-z

Keywords

Navigation