Skip to main content
Log in

A Universal Method for the Identification of Bacteria Based on General PCR Primers

  • Original Article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

The Universal Method (UM) described here will allow the detection of any bacterial rDNA leading to the identification of that bacterium. The method should allow prompt and accurate identification of bacteria. The principle of the method is simple; when a pure PCR product of the 16S gene is obtained, sequenced, and aligned against bacterial DNA data base, then the bacterium can be identified. Confirmation of identity may follow. In this work, several general 16S primers were designed, mixed and applied successfully against 101 different bacterial isolates. One mixture, the Golden mixture7 (G7) detected all tested isolates (67/67). Other golden mixtures; G11, G10, G12, and G5 were useful as well. The overall sensitivity of the UM was 100% since all 101 isolates were detected yielding intended PCR amplicons. A selected PCR band from each of 40 isolates was sequenced and the bacterium identified to species or genus level using BLAST. The results of the UM were consistent with bacterial identities as validated with other identification methods; cultural, API 20E, API 20NE, or genera and species specific PCR primers. Bacteria identified in the study, covered 34 species distributed among 24 genera. The UM should allow the identification of species, genus, novel species or genera, variations within species, and detection of bacterial DNA in otherwise sterile samples such as blood, cerebrospinal fluid, manufactured products, medical supplies, cosmetics, and other samples. Applicability of the method to identifying members of bacterial communities is discussed. The approach itself can be applied to other taxa such as protists and nematodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bergeron MG, Ouellette M (1998) Preventing antibiotic resistance through rapid genotypic identification of bacteria and of their antibiotic resistance genes in the clinical microbiology laboratory. J Clin Microbiol 36:2169–2172

    PubMed  CAS  Google Scholar 

  2. Felske A, Wolterink A, Van Lis R, Akkermans ADL (1998) Phylogeny of the main bacterial 16S rRNA sequences in Drentse A grassland soils (The Netherlands). Appl Envir Microbiol 64:871–879

    CAS  Google Scholar 

  3. Mareckova MS, Cermak L, Novotna J, Plhackova K, Forstova J, Kopecky J (2008) Innovative methods for soil DNA purification tested in soils with widely differing characteristics. Appl Environ Microbiol 74:2902–2907

    Article  Google Scholar 

  4. Ott SJ, Musfeldt M, Ullmann U, Hampe J, Schreiber S (2004) Quantification of intestinal bacterial populations by real-time pcr with a universal primer set and minor groove binder probes: a global approach to the enteric flora. J Clin Microbiol 422:566–2572

    Google Scholar 

  5. Sigal N, Senez JC, Le Gall J, Sebald M (1963) Base composition of the deoxyribonucleic acid of sulfate-reducing bacteria. J Bacteriol 85:1315–1318

    PubMed  CAS  Google Scholar 

  6. Perry D, Slade H (1961) Transformation of streptococci to streptomycin resistance. J Bacteriol 83:443–449

    Google Scholar 

  7. Inácio J, Flores O, Martins IS (2008) Efficient identification of clinically relevant Candida yeast species by use of an assay combining panfungal loop-mediated isothermal DNA amplification with hybridization to species-specific oligonucleotide probes. J Clin Microbiol 46:713–720

    Article  PubMed  Google Scholar 

  8. Nilsson H, Taneera J, Castedal M, Glatz E, Olsson R, Wadström T (2000) Identification of Helicobacter pylori and Other Helicobacter Species by PCR, hybridization and partial DNA sequencing in human liver samples from patients with primary sclerosing cholangitis or primary biliary cirrhosis. J Clin Microbiol 38:1072–1076

    PubMed  CAS  Google Scholar 

  9. Owen RH, Dymock D, Booth V, Weightman AJ, Wade WG (1999) Detection of unculturable bacteria in periodontal health and disease by PCR. J Clin Microbiol 37:1469–1473

    Google Scholar 

  10. Lund M, Nordentoft S, Pedersen K, Madsen M (2004) Detection of Campylobacter spp. in chicken fecal samples by real-time PCR. J Clin Microbiol 42:5125–5132

    Article  PubMed  CAS  Google Scholar 

  11. Richards GP, Watson MA, Fankhauser RL, Monroe SS (2004) Genogroup I and II noroviruses detected in stool samples by real-time reverse transcription-PCR using highly degenerate universal primers. Appl Envir Microbiol 70:7179–7184

    Article  CAS  Google Scholar 

  12. Mitterer G, Huber M, Leidinger E, Kirisits C, Lubitz W, Mueller MW, Schmidt WM (2004) Microarray-based identification of bacteria in clinical samples by solid-phase PCR amplification of 23S ribosomal DNA sequences. J Clin Microbiol 42:1048–1057

    Article  PubMed  CAS  Google Scholar 

  13. Yasuoka MO (2002) A multiplex polymerase chain reaction–based diagnostic method for bacterial vaginosis. Obst Gynecol 100:759–764

    Article  Google Scholar 

  14. van der Lelie D, Lesaulnier C, McCorkle S, Geets J, Taghavi S, Dunn J (2006) Use of single-point genome signature tags as a universal tagging method for microbial genome surveys. Appl Environ Microbiol 72:2092–2101

    Article  PubMed  Google Scholar 

  15. Anderson M, Bollinger D, Hagler A, Hartwell H, Rivers B, Ward K, Steck TR (2004) Viable but Nonculturable Bacteria are Present in Mouse and Human Urine Specimens. J Clin Microbiol 42:753–758

    Article  PubMed  Google Scholar 

  16. Haas JH, Moore LW, Ream W, Manulis S (1995) Universal PCR primers for detection of phytopathogenic Agrobacterium strains. Appl Environ Microbiol 61:2879–2884

    PubMed  CAS  Google Scholar 

  17. Peng X, Luo W, Zhang J, Wang S, Lin S (2002) Rapid detection of Shigella species in environmental sewage by an immunocapture PCR with universal primers. Appl Environ Microbiol 68:2580–2583

    Article  PubMed  CAS  Google Scholar 

  18. Spilker T, Coenye T, Vandamme P, LiPuma JJ (2004) PCR-based assay for differentiation of Pseudomonas aeruginosa from other Pseudomonas species recovered from cystic fibrosis patients. J Clin Microbiol 42:2074–2079

    Article  PubMed  CAS  Google Scholar 

  19. Bethlehem University, DNA sequencing http://hrl.bethlehem.edu/services.shtml

  20. Kirchman DL, Yu L, Cottrell MT (2003) Diversity and abundance of uncultured Cytophaga-like bacteria in the Delaware Estuary. Appl Environ Microbiol 69:6587–6596

    Article  PubMed  CAS  Google Scholar 

  21. Kox LFF, van Leeuwen J, Knijper S, Jansen HM, Kolk HJ (1995) PCR assay based on DNA coding for 16S rRNA for detection and identification of Mycobacteria in clinical samples. J Clin Microbiol 33:3225–3233

    PubMed  CAS  Google Scholar 

  22. Verma A, Sampla AK, Tyagi JS (1999) Mycobacterium tuberculosis rrn promoters: differential usage and growth rate-dependent control. J Bacteriol 181:4326–4333

    PubMed  CAS  Google Scholar 

  23. Barghouthi S (2009) Helicobacter pylori: a theoretical background with a practical approach to growth and behavior, vol 1. Acknaton Design and Print, Ramallah, Palestine

    Google Scholar 

  24. Tyler SD, Strathdee CA, Rozee KR, Johnson WM (1995) Oligonucleotide primers designed to differentiate pathogenic Pseudomonads on the basis of the sequencing of genes coding for 16S–23S rRNA internal transcribed spacers. Clin Diag Lab Immunol 2:448–453

    CAS  Google Scholar 

  25. Aakra A, Utaker JB, Nes IF (1999) RFLP of rRNA genes and sequencing of the 16S–23S rDNA intergenic spacer region of ammonia-oxidizing bacteria: a phylogenetic approach. Int J Sys Bacteriol 49:123–130

    Article  CAS  Google Scholar 

  26. Bosshard PP, Zbinden R, Abels S, Boddinghaus B, Altwegg M, Bottger EC (2006) 16S rRNA gene sequencing versus the API 20 NE system and the VITEK 2 ID-GNB card for identification of nonfermenting gram-negative bacteria in the clinical laboratory. J Clin Microbiol 44:1359–1366

    Article  PubMed  CAS  Google Scholar 

  27. Marshall SM, Melito PL, Woodward DL, Johnson WM, Rodgers FG, Mulvey MR (1999) Rapid identification of Campylobacter, Arcobacter and Helicobacter isolates by PCR-restriction fragment length polymorphism analysis of the 16S rRNA gene. J Clin Microbiol 37:4158–4160

    PubMed  CAS  Google Scholar 

  28. Raut AD, Kapadnis BP, Shashidhar R, Bandekar JR, Vaishampayan P, Shouche YS (2007) Letter to the editor “nonspecific pcr amplification of the 16s rrna gene segment in different bacteria by use of primers specific for Campylobacter, Arcobacter and Helicobacter spp”. J Clin Microbiol 45:1376–1377

    Article  PubMed  CAS  Google Scholar 

  29. Alexeeva I, Elliott EJ, Rollins S, Gasparich GE, Lazar J, Rohwer RG (2006) Absence of Spiroplasma or other bacterial 16S rRNA genes in brain tissue of hamsters with scrapie. J Clin Microbiol 44:91–97

    Article  PubMed  CAS  Google Scholar 

  30. Ben-Dov E, Shapiro OH, Siboni N, Kushmaro A (2006) Advantage of using inosine at the 3-termini of 16S rRNA gene universal primers for the study of microbial diversity. Appl Envir Microbiol 72:6902–6906

    Article  CAS  Google Scholar 

  31. O’Hara CM (2005) Manual and Automated instrumentation for identification of Enterobacteriaceae and Other Aerobic Gram-negative Bacilli. Clin Microbiol Rev 18:147–162

    Article  PubMed  Google Scholar 

  32. Pujol BS, Vabret A, Legrand L, Dina J, Gouarin S, Lecherbonnier PJ, Pozzetto B, Ginevra C, Freymuth F (2005) Development of three multiplex RT-PCR assays for the detection of 12 respiratory RNA viruses. J Virol Methods 126:53–63

    Article  Google Scholar 

  33. Hendolin PH, Markkanen A, Ylikoski J, Wahlfors JJ (1997) Use of multiplex PCR for simultaneous detection of four bacterial species in middle ear effusions. J Clin Microbiol 35:2854–2858

    PubMed  CAS  Google Scholar 

  34. Daly K, Sharp RJ, McCarthy AJ (2000) Development of oligonucleotide probes and PCR primers for detecting phylogenetic subgroups of sulfate-reducing bacteria. Microbiol 146:1693–1705

    CAS  Google Scholar 

  35. Han J, Swan DC, Smith SJ, Lum SH, Sefers SE, Unger ER, Tang YW (2006) Simultaneous amplification and differentiation of 25 human papillomaviruses with Templex technology. J Clin Microbiol 44:4157–4162

    Article  PubMed  CAS  Google Scholar 

  36. Daims H, Bru¨hl A, Amann R, Schleifer KH, Wagner M (1999) The domain-specific probe EUB338 is insufficient for the detection of all bacteria: development and evaluation of a more comprehensive probe set. Syst Appl Microbiol 22:434–444

    PubMed  CAS  Google Scholar 

  37. Hathaway LJ, Brugger S, Martynova A, Aebi S, Mühlemann K (2007) Use of the Agilent 2100 Bioanalyzer for Rapid and Reproducible Molecular Typing of Streptococcus pneumoniae. J Clin Microbiol 45:803–809

    Article  PubMed  CAS  Google Scholar 

  38. Luna RA, Fasciano LR, Jones SC, Boyanton BL Jr, Ton TT, Versalovic J (2007) DNA pyrosequencing-based bacterial pathogen identification in a pediatric hospital setting. J Clin Microbiol 45:2985–2992

    Article  PubMed  CAS  Google Scholar 

  39. Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    PubMed  CAS  Google Scholar 

  40. Stull TL, LiPuma JJ, Edlind TD (1988) A broad-spectrum probe for molecular epidemiology of bacteria: ribosomal RNA. Infect Dis 157:280–285

    Article  CAS  Google Scholar 

  41. Eubacterial Species http://www.speciesaccounts.org/SPECIES%20LISTS.htm

  42. Barghouthi S (2008) A UM for the identification of bacteria based on general PCR primers. In: Abstract Annual General Meeting American Society for Microbiology, K-085, p 150

  43. BLAST: http://www.ncbi.nlm.nih.gov/sutils/genom_table.cgi

  44. BLAST (Nucleotide collection): http://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Nucleotides&PROGRAM=blastn&MEGABLAST

  45. Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  46. Clayton CL, Kleanthous H, Coates PJ, Morgan DD, Tabaqchali S (1992) Sensitive detection of Helicobacter pylori by using polymerase chain reaction. J Clin Microbiol 30:192–200

    PubMed  CAS  Google Scholar 

  47. Teyssier C, Marchandin H, Jean-Pierre H, Diego I, Darbas H, Jeannot JL et al (2005) Molecular and phenotypic features for identification of the opportunistic pathogens Ochrobactrum spp. J Med Microbiol 54:945–953

    Article  PubMed  CAS  Google Scholar 

  48. Yamamoto S, Harayama S (1995) PCR amplification and direct sequencing of gyrB genes with universal primers and their application to the detection and taxonomic analysis of pseudomonas putida strains. Appl Envir Microbiol 61:1104–1109.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by DFG grant Number: 885-2341. Special thanks to Mr. Mohamed Hassan Qabajah for volunteer work, and Mr. Mohamed Ayesh for provision of some bacterial isolates. Department of Medical Laboratory Sciences and professor Samira Barghouthi, Dean of Research, Al-Quds University, for suggestions and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sameer A. Barghouthi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barghouthi, S.A. A Universal Method for the Identification of Bacteria Based on General PCR Primers. Indian J Microbiol 51, 430–444 (2011). https://doi.org/10.1007/s12088-011-0122-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-011-0122-5

Keywords

Navigation