Skip to main content
Log in

Rhizoremediation of metals: harnessing microbial communities

  • Review
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

With the increasing successful stories of decontamination, different strategies for metal remediation are gaining importance and popularization in developing countries. Rhizoremediation, is one such promising option that harnesses the impressive capabilities of microorganisms associated with roots to degrade organic pollutants and transform toxic metals. Since it is a plant based in-situ phytorestoration technique it is proven to be economical, efficient and easy to implement under field conditions.

Plants grown in metal contaminated sites harbor unique metal tolerant and resistant microbial communities in their rhizosphere. These rhizo-microflora secrete plant growth promoting substances, siderophores, phytochelators to alleviate metal toxicity, enhance the bioavailability of metals (phytoremediation) and complexation of metals (phytostabilisation). Selection of right bacteria/consortia and inoculation to seed/ roots of suitable plant species will widen the perspectives of rhizoremediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ramasamy K, Mahimairaja A and Naidu R (2000) Remediation of soils contaminated with chromium due to tannery wastes disposal. In: Remediation Engineering of Contaminated Soils (Wise DL, Trantolo DJ, Inyang HL and Cichon EJ ed). Marcel Dekker, pp 583–615

  2. Ramasamy K and Naidu R (2000) Status of tannery industries in India. In: Towards Better Management of Tannery Waste Contaminated Soils (Naidu R, Ramasamy K and Mahimairaja S ed). ACIAR Publication, Adelaide, pp 13–21

    Google Scholar 

  3. Krishna AK and Govil PK (2004) Heavy metal contamination of soil around Pali industrial area, Rajasthan, India. Environ Geol 47:38–44

    Article  CAS  Google Scholar 

  4. Glass DJ (2000) Economic potential of phytoremediation In: Phytoremediation of toxic metals — Using plants to clean up the environment. John Wiley and Sons, New York pp 15–33

    Google Scholar 

  5. Leigh MB (2006) Methods for rhizoremediation research In: Phytoremediation and Rhizoremediation (Mackova M, Dowling D and Macek T eds). Springer, Netherlands, pp 33–52

    Chapter  Google Scholar 

  6. Narasimhan K, Basheer C, Bajic VB and Swarup S (2003) Enhancement of plant microbe interactions using rhizosphere metabolomics — driven approach and its applications in the removal of polychlorinated biphenyls. Plant Physiol 132:146–153

    Article  PubMed  CAS  Google Scholar 

  7. Qiu X, Shah SJ, Kendall EW, Sorensen DL, Sims RC and Engelke MC (1994) Grass enhanced bioremediation for clay soils contaminated with polynuclear aromatic hydrocarbons In: Bioremediation through Rhizosphere Technology (Anderson TA and Coates JR ed). American Chemical Society, Washington DC, pp 142–157

    Google Scholar 

  8. Walton BT and Anderson TA (1990) Microbial degradation of trichloroethylene in the rhizosphere: Potential application to biological remediation of waste sites. Appl Environ Microbiol 56:1012–1016

    PubMed  CAS  Google Scholar 

  9. Chen H and Cutright TJ (2003) Preliminary evaluation of microbially mediated precipitation of cadmium, chromium, and nickel by rhizosphere consortium. J Environ Engrg 129:4–9

    Article  CAS  Google Scholar 

  10. Arundhati P, Wauters G and Paul AK (2007) Nickel tolerance and accumulation by bacteria from rhizosphere of nickel hypera ccumulators in serpentine soil ecosystem of Andaman, India. Plant and Soil 293:1–2

    Article  CAS  Google Scholar 

  11. Kuiper I, Lagendijk EL, Bloemberg GV and Lugtenberg (2004) Rhizoremediation: A beneficial plant microbe interaction. Molecular Plant Microbe Interactions 17:6–15

    Article  PubMed  CAS  Google Scholar 

  12. Mackova M, Dowling D and Macek T (2006) Phytoremediation and Rhizoremediation, Springer, Netherlands, 290 p

    Google Scholar 

  13. Abou-Shanab RI, Angle JS and Chaney RL (2006) Bacterial inoculants affecting nickel uptake by Alyssum murale from low, moderate and high Ni soils. Soil Biol Biochem 38: 2882–2889

    Article  CAS  Google Scholar 

  14. United States Patent 7214516 Bacterial effects on metal accumulation by plants. http://www.freepatentsonline.com/7214516.html

  15. Nichols TD, Wolf TC, Rogers HB, Beyrouty CA and Reynolds CM (1997) Rhizosphere microbial populations in contaminated soils. Water Air Soil Pollut 95:165–178

    CAS  Google Scholar 

  16. Chin-A-Woeng TFC, De Priester W, van der Bij AJ, Ligtenberg BJJ (1997) Description and colonization of a gnotobiotic tomato rhizosphere by Pseudomonas fluorescens biocontrol strain WCS365 using scanning electron microscopy. Mol Plant-Microbe Interact 10:79–86

    Article  CAS  Google Scholar 

  17. Okon Y, Bloemberg GV and Lugtenberg BJJ (1998) Biotechnology of biofertilisation and phytostimulation In Agricultural Biotechnology (Altman A ed), Dekker, New York

    Google Scholar 

  18. Abou-Shanab R, Ghozian H, Ghanem K and Moawad H (2005) Behaviour of bacterial populations isolated from rhizosphere of Diplachne fusca dominant in industrial sites. World J Microbiol Biotechnol 21:1095–1101

    Article  CAS  Google Scholar 

  19. Obbard JP, Sauerback D and Jones KC (1994) Dehydrogenase activity of the microbial biomass in soils from a field experiment amended with heavy metal contaminated sewage sludges. The Sci Tot Environ 142:157–162

    Article  CAS  Google Scholar 

  20. Kamaludeen SPB, Megharaj M, Juhasz A, Sethunathan N and Naidu R (2003) Chromium-Microorganisms’ interactions in soil: Implications to remediation. Rev Environ Contam Toxicol 178:93–164

    Article  PubMed  CAS  Google Scholar 

  21. Brookes PC and McGrath SP (1984) Effects of metal toxicity on the size of the soil microbial biomass. J Soil Sci 35:341–346

    Article  CAS  Google Scholar 

  22. Kamaludeen SPB, Megharaj M, Naidu R, Singleton I, Juhasz A, Hawke BG and Sethunathan N (2003) Microbial activity and phospholipids fatty acid pattern in long-term tannery waste contaminated soils. Ecotoxicol Environ Saf 56:302–310

    Article  PubMed  CAS  Google Scholar 

  23. Frostegard A, Tunlid A and Baath E (1993) Phospholipid fatty acid composition, biomass and activity of microbial communities from two soil types experimentally exposed to different heavy metals. Appl Environ Microbiol 59:3605–3617

    PubMed  Google Scholar 

  24. Idris R, Trifonova R, Puschenreiter M, Wenzel WW and Sessitsch A (2004) Bacterial communities associated with flowering plants of the Ni hyperaccumulator Thlaspi goesingense. Appl Environ Microbiol 70:2667–2677

    Article  PubMed  CAS  Google Scholar 

  25. Aboudrar W, Schwartz C, Benizri E, Morel JL and Boularbah A (2007) Soil microbial diversity as affected by the rhizosphere of the hyperaccumulator Thlaspi caerulescens under natural conditions. Int J Phytorem 9:41–52

    Article  CAS  Google Scholar 

  26. Abou-Shanab R, Delorme TA, Angle JSM, Chaney RL, Ghanem K, Moawad H and Ghozlan HA (2003) Phenotypic characterization of microbes in the rhizosphere of Alyssum murale. Int J Phytoremediation 5:367–379

    Article  PubMed  CAS  Google Scholar 

  27. Abou-Shanab R, Angel JS, Delorme TA, Chaney RL, Van Berkum P, Moawad H, Ghanem K and Ghozlan HA (2003) Rhizobacterial effects on nickel extraction from soil and uptake by Alyssum murale. New phytol 158:219–224

    Article  CAS  Google Scholar 

  28. Mengoni A, Grassi E, Barzanti R, Biondi EG, Gonnelli C, Kim CK and Bazzicalupo (2004) Genetic diversity of bacterial communities of serpentine soil and of rhizosphere of the Nickel-hyperaccumulator Plant Alyssum bertolonii. Microbial Ecol 48:209–217

    Article  CAS  Google Scholar 

  29. Chopra BK, Bhat S, Mikheenko IP, Xu Z, Yang Y, Luo X, Chen H, Zweiten LV, Lilley RM and Zhang R (2007) The characteristics of rhizosphere microbes associated with plants in arsenic-contaminated soils from cattle dip sites. Sci Tot Environ 378:331–342

    Article  CAS  Google Scholar 

  30. Huang A, Teplitski M, Rathinasabapathi B and Ma L (2007) Characterization of rhizosphere bacteria of the arsenic hyperaccumulator Chinese Brake Fern (Pteris vittata L.) The ASA-CSSA-SSSA International Annual Meetings (Nov 4–8, 2007) http://a-c-s.confex.com/a-c-s/2007am/techprogram/P33676.HTM

  31. Kunito T, Saeki K, Nagaoka K, Oyaizu H and Matsumoto (2001) Characterisation of copper resistant bacterial community in rhizosphere of highly copper-contaminated soil. Eur J Soil Biol 37:95–102

    Article  CAS  Google Scholar 

  32. Ioannis I and Coyne MS (2007) Soil microbial community response to hexavalent chromium in planted and unplanted soil. J Environ Qual 36:638–645

    Article  CAS  Google Scholar 

  33. Zhuang X, Chen J, Shim H and Bai Z (2007) New advances in plant growth-promoting rhizobacteria for bioremediation. Environ Int 33:406–413

    Article  PubMed  Google Scholar 

  34. Ramasamy K and Kamaludeen SPB (2007) Bioremediation of Metals: Microbial processes and techniques. In: Environmental Bioremediation Technologies (Singh SN and Tripathi RD ed). Springer, pp 173–187

  35. Belimov AA, Kunakova AM, Safronova VI, Stepanok VV, Yudkin LY, Alekseev YV and Kozhemyakov AP (2004) Employment of rhizobacteria for the inoculation of barley plants cultivated in soil contaminated with lead and cadmium. Microbiology 73:99–106

    Article  CAS  Google Scholar 

  36. Abou-Shanab RA, Ghanem K, Ghanem N and Al-Kolaibe A (2007) The role of bacteria on heavy-metal extraction and uptake by plants growing on multi-metal-contaminated soils. World J Microbiol Biotechnol (in press)

  37. Marschner H (1995) Mineral Nutrition of Higher Plants. Academic Press, London, 889 p

    Google Scholar 

  38. Whiting SN, Souza MP and Terry N (2001) Rhizosphere bacteria mobilize Zn for hyperaccumulation by Thlaspi caerulescens. Environ Sci Technol 35:3144–3150

    Article  PubMed  CAS  Google Scholar 

  39. Burd GI, Dixon DG and Glick BR (1998) A plant growth-promoting bacterium that decreases nickel toxicity in seedlings. Appl Environ Microbiol 64:3663–3668

    PubMed  CAS  Google Scholar 

  40. de Souza MP, Chu D, Zhao M, Zayed AM, Ruzin SE, Schichnes D and Terry N (1999) Rhizosphere bacteria enhance selenium accumulation and volatilization by Indian mustard. Plant Physiol 119:565–574

    Article  PubMed  Google Scholar 

  41. Al Agely A, Sylvia DM and Ma L (2005) Mycorrhiza increase arsenic uptake by the hyperaccumulator Chinese brake fern (Pteris vittata L.). J Environ Qual 34:2181–2186

    Article  PubMed  CAS  Google Scholar 

  42. Gonzaga MIS, Santos JAG and Ma LQ (2006) Arsenic phytoextraction and hyperaccumulation by fern species. Sci Agric 63:90–101

    Article  CAS  Google Scholar 

  43. Cai Y, Su JH and Ma LQ (2004) Low molecular weight thiols in arsenic hyperaccumulator Pteris vittata upon exposure to arsenic and other trace elements. Environ Pollut 129:69–78

    Article  PubMed  CAS  Google Scholar 

  44. Trotta A, Falaschi P, Cornara L, Mingati V, Fusconi A, Drava G and Berta G (2006) Arbuscular mycorrhizae increase the arsenic translocation factor in the As hyperaccumulating fern Pteris vittata L. Chemosphere 65:74–81

    Article  PubMed  CAS  Google Scholar 

  45. Chen YX, Wang YP, Lin Q and Luo YM (2005) Effect of copper-tolerant rhizosphere bacteria on mobility of copper in soil and copper accumulation by Elsholtzia splendens. Environ Int 31:861–866

    Article  PubMed  CAS  Google Scholar 

  46. Vivas A, Vörös I, Biro B, Campos E, Barea JM and Azcon R (2003) Symbiotic efficiency of autochthonous arbuscular mycorrhizal fungus (G. mosseae) and Brevibacillus sp. isolated from cadmium polluted soil under increasing cadmium levels. Environ Pollut 126:179–189

    Article  PubMed  CAS  Google Scholar 

  47. Sheng XF and Xia JJ (2006) Improvement of rape (Brassica napus) plant growth and cadmium uptake by cadmium-resistant bacteria. Chemosphere 64:1036–1042

    Article  PubMed  CAS  Google Scholar 

  48. Sriprang R, Hayashi M, Ono H, Takagi M, Hirata K and Murooka Y (2003) Enhanced accumulation of Cd [2] by a Mesorhizobium sp. Transformed with a gene from Arabidopsis thaliana coding for phytochelatin synthase. Appl Environ Microbiol 69:1791–1796

    Article  PubMed  Google Scholar 

  49. Huang Y, Tao S and Chen YJ (2005) The role of arbuscular mycorrhiza on change of heavy metal speciation in rhizosphere of maize in wastewater irrigated agriculture soil. J Environ Sci 17:276–280

    CAS  Google Scholar 

  50. Wu CH, Wood TK, Mulchandani A and Chen WA (2006) Engineering plant microbe symbiosis for rhizoremediation of heavy metals. Appl Environ Microbiol 72:1129–1134

    Article  PubMed  CAS  Google Scholar 

  51. Lee W, Wood TK and Chen W (2006) Engineering TCE degrading rhizobacteria for heavy metal accumulation and enhanced TCE degradation. Online www.interscience.wiley.com

  52. Delorme TA, Galiardi JV, Angle JS and Chaney RL (2001) Influence of the zinc hyperaccumulator Thlaspi caerulescens J. and C. Presl. and the nonmetal accumulator Trifolium pratense L. on soil microbial populations. Can J Microbiol 47:773–776

    Article  PubMed  CAS  Google Scholar 

  53. Peng HY, Yang XE and Jiang LY (2005) Copper phytoavailability and uptake by Elsholtzia splendens from contaminated soil as affected by soil amendments. J Environ Sci Health 40:839–856

    Article  CAS  Google Scholar 

  54. Blake RC, Choate DM, Bardhan S, Revis N, Barton LL and Zocco TG (1993) Chemical transformation of toxic metals by a Pseudomonas strain from a toxic waste site. Environ Toxicol Chem 12:1365–1376

    Article  CAS  Google Scholar 

  55. Hasnain S and Sabri AN (1996) Growth stimulation of Triticum Aestivum seedlings under Cr-stresses by non rhizospheric Pseudomonad strains. Abstracts of the 7th International Symposium on Biological Nitrogen Fixation with Non-Legumes. The Netherlands: Kluwer Academic Publishers, p. 36

    Google Scholar 

  56. Leong J (1986) Siderophores: their biochemistry and possible role in control of plant pathogens. Annu Rev Phytopathol 24:187–209

    Article  CAS  Google Scholar 

  57. Dell’Amico E, Cavalca L and Andreoni V (2005) Analysis of rhizobacterial communities in perennial graminaceae from polluted water meadow soil, and screening of metal resistant, potentially plant growth-promoting bacteria FEMS Microbiol Ecol 52:153–162

    Article  PubMed  CAS  Google Scholar 

  58. Glick BR, Penrose DM and Li JP (1998) A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theor Biol 190:63–68

    Article  PubMed  CAS  Google Scholar 

  59. Pishchik VN, Vorob’ev NI and Provorov NA (2005) Experimental and mathematical simulation of population dynamics of rhizospheric bacteria under conditions of cadmium stress. Microbiol 74:735–740

    Article  CAS  Google Scholar 

  60. Sethunathan N, Megharaj M, Smith L, Kamaludeen SPB, Avudainayagam S and Naidu R (2005) Microbial role in the failure of natural attenuation of Cr(VI) in long-term tannery waste contaminated soil. Agric Ecosys Environ 105:657–661

    Article  CAS  Google Scholar 

  61. Leung HM, Ye ZH and Wong MH (2006) Interactions of mycorrhizal fungi with Pteris vittata (As hyperaccumulator) in As-contaminated soils. Environ Poll 139:1–8

    Article  CAS  Google Scholar 

  62. Chen BD, Zhu YG and Smith FA (2006) Effects of abuscular mycorrhizal inoculation on uranium and arsenic accumulation by Chinese brake fern (Pteris vittata L.) from a uranium mining-impacted soil. Chemosphere 62:1464–1473

    Article  PubMed  CAS  Google Scholar 

  63. Chen YX, Wang Y, Wu W, Lin Q and Xue S (2006) Impacts of chelate-assisted phytoremediation on microbial community composition in the rhizosphere of a copper accumulator and non-accumulator. Sci Tot Env 356:247–255

    Article  CAS  Google Scholar 

  64. Marilley L, Vogt G, Blanc M and Aragno M (1998) Bacterial diversity in the bulk soil and rhizosphere fractions of Lolium perenne and Trifolium repens as revealed by PCR restriction analysis of 16S rDNA. Plant Soil 198:219–224

    Article  CAS  Google Scholar 

  65. Bae W, Chen W, Mulchandani A and Mehra R (2000) Enhanced bioaccumulation of heavy metals by bacterial cells displaying synthetic phytochelatins. Biotechnol Bioeng 70:518–523

    Article  PubMed  CAS  Google Scholar 

  66. Bae W, Wu CH, Kostal J, Mulchandani A and Chen W (2003) Enhanced mercury biosorption by bacterial cells with surface-displayed MerR. Appl Environ Microbiol 69:3176–3180

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. P. B. Kamaludeen or K. Ramasamy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamaludeen, S.P.B., Ramasamy, K. Rhizoremediation of metals: harnessing microbial communities. Indian J Microbiol 48, 80–88 (2008). https://doi.org/10.1007/s12088-008-0008-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-008-0008-3

Keywords

Navigation