Skip to main content
Log in

From outside to inside and back again: the lysophosphatidic acid-CCN axis in signal transduction

  • Research article
  • Published:
Journal of Cell Communication and Signaling Aims and scope

Abstract

CCN1 and CCN2 are matricellular proteins that are transcriptionally induced by various stimuli, including growth factors. CCN proteins act to facilitate signaling events involving extracellular matrix proteins. Lysophosphatidic acid (LPA) is a lipid that activates G protein-coupled receptors (GPCRs), enhancing proliferation, adhesion, and migration in many types of cancer cells. Our group previously reported that LPA induces production of CCN1 protein in human prostate cancer cell lines within 2–4 h. In these cells, the mitogenic activity of LPA is mediated by LPA Receptor 1 (LPAR1), a GPCR. There are multiple examples of the induction of CCN proteins by LPA, and by the related lipid mediator sphingosine-1-phosphate (S1P), in various cellular models. The signaling pathways responsible for LPA/S1P-induced CCN1/2 typically involve activation of the small GTP-binding protein Rho and the transcription factor YAP. Inducible CCNs can potentially play roles in downstream signal transduction events required for LPA and S1P-induced responses. Specifically, CCNs secreted into the extracellular space can facilitate the activation of additional receptors and signal transduction pathways, contributing to the biphasic delayed responses typically seen in response to growth factors acting via GPCRs. In some model systems, CCN1 and CCN2 play key roles in LPA/S1P-induced cell migration and proliferation. In this way, an extracellular signal (LPA or S1P) can activate GPCR-mediated intracellular signaling to induce the production of extracellular modulators (CCN1 and CCN2) that in turn initiate another round of intracellular signaling.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Download references

Acknowledgements

This work was supported by the ASPET David Lehr Award (K.E.M.) and by the Washington State University College of Pharmacy and Pharmaceutical Sciences

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathryn E. Meier.

Ethics declarations

Conflicts of interests

The authors have no financial or non-financial competing interests that are directly or indirectly related to the work submitted for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balijepalli, P., Meier, K.E. From outside to inside and back again: the lysophosphatidic acid-CCN axis in signal transduction. J. Cell Commun. Signal. 17, 845–849 (2023). https://doi.org/10.1007/s12079-023-00728-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12079-023-00728-z

Keywords

Navigation