Skip to main content
Log in

The cryptic role of CXCL17/CXCR8 axis in the pathogenesis of cancers: a review of the latest evidence

  • Review
  • Published:
Journal of Cell Communication and Signaling Aims and scope

Abstract

Chemokines are immune system mediators that mediate various activities and play a role in the pathogenesis of several cancers. Among these chemokines, C-X-C motif chemokine 17 (CXCL-17) is a relatively novel molecule produced along the airway epithelium in physiological and pathological conditions, and evidence shows that it plays a homeostatic role in most cases. CXCL17 has a protective role in some cancers and a pathological role in others, such as liver and lung cancer. This chemokine, along with its possible receptor termed G protein-coupled receptor 35 (GPR35) or CXCR8, are involved in recruiting myeloid cells, regulating angiogenesis, defending against pathogenic microorganisms, and numerous other mechanisms. Considering the few studies that have been performed on the dual role of CXCL17 in human malignancies, this review has investigated the possible pro-tumor and anti-tumor roles of this chemokine, as well as future treatment options in cancer therapy.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahrne S, Nobaek S, Jeppsson B, Adlerberth I, Wold A, Molin G (1998) The normal Lactobacillus flora of healthy human rectal and oral mucosa. J Appl Microbiol 85(1):88–94

    Article  CAS  PubMed  Google Scholar 

  • Ali H, AbdelMageed M, Olsson L, Israelsson A, Lindmark G, Hammarström M-L, Hammarström S, Sitohy B (2019) Utility of G protein-coupled receptor 35 expression for predicting outcome in colon cancer. Tumor Biology 41(6):1010428319858885

    Article  CAS  PubMed  Google Scholar 

  • Aminzadeh F, Ghorashi Z, Nabati S, Ghasemshirazi M, Arababadi MK, Shamsizadeh A, Karimabad MN, Khorramdelazad H, Darakhshan S, Hassanshahi G (2012) Differential Expression of CXC Chemokines CXCL 10 and CXCL 12 in Term and Pre-term Neonates and Their Mothers. Am J Reprod Immunol 68(4):338–344

    Article  CAS  PubMed  Google Scholar 

  • Amir NABM, Mackenzie AE, Jenkins L, Boustani K, Hillier MC, Tsuchiya T, Milligan G, Pease JE (2018) Evidence for the existence of a CXCL17 receptor distinct from GPR35. J Immunol 201(2):714–724

    Article  Google Scholar 

  • Avvari S, Prasad D, Khan IA (2022) Role of MicroRNAs in cell growth proliferation and tumorigenesis. Role of MicroRNAs in Cancers. Springer, pp 37–51

  • Azin H, Vazirinejad R, Ahmadabadi BN, Khorramdelazad H, Zarandi ER, Arababadi MK, Karimabad MN, Shamsizadeh A, Rafatpanah H, Hassanshahi G (2012) The SDF-1 3′ a genetic variation of the chemokine SDF-1α (CXCL12) in parallel with its increased circulating levels is associated with susceptibility to MS: a study on Iranian multiple sclerosis patients. J Mol Neurosci 47(3):431–436

    Article  CAS  PubMed  Google Scholar 

  • Behfar S, Hassanshahi G, Nazari A, Khorramdelazad H (2018) A brief look at the role of monocyte chemoattractant protein-1 (CCL2) in the pathophysiology of psoriasis. Cytokine 110:226–231

    Article  CAS  PubMed  Google Scholar 

  • Bottomley MJ, Thomson J, Harwood C, Leigh I (2019) The role of the immune system in cutaneous squamous cell carcinoma. Int J Mol Sci 20(8): 2009

  • Bray F, Laversanne M, Weiderpass E, Soerjomataram I (2021) The ever-increasing importance of cancer as a leading cause of premature death worldwide. Cancer 127(16):3029–3030

    Article  PubMed  Google Scholar 

  • Burkhardt AM, Maravillas-Montero JL, Carnevale CD, Vilches-Cisneros N, Flores JP, Hevezi PA, Zlotnik A (2014) CXCL17 is a major chemotactic factor for lung macrophages. J Immunol 193(3):1468–1474

    Article  CAS  PubMed  Google Scholar 

  • Burkhardt AM, Tai KP, Flores-Guiterrez JP, Vilches-Cisneros N, Kamdar K, Barbosa-Quintana O, Valle-Rios R, Hevezi PA, Zuñiga J, Selman M (2012) CXCL17 is a mucosal chemokine elevated in idiopathic pulmonary fibrosis that exhibits broad antimicrobial activity. J Immunol 188(12):6399–6406

    Article  CAS  PubMed  Google Scholar 

  • Cameron MJ, Kelvin DJ (2003) Cytokines and chemokines-their receptors and their genes: an overview. Adv Exp Med Biol 520:8–32

    Article  CAS  PubMed  Google Scholar 

  • Choi SI, Yoon C, Park MR, Lee D, Kook M-C, Lin J-X, Kang JH, Ashktorab H, Smoot DT, Yoon SS (2019) CDX1 expression induced by CagA-expressing Helicobacter pylori promotes gastric tumorigenesis. Mol Cancer Res 17(11):2169–2183

    Article  CAS  PubMed  Google Scholar 

  • Choreño-Parra JA, Dunlap MD, Swanson R, Jiménez-Álvarez LA, Muñoz-Torrico M, Guzmán-Beltrán S, Zúñiga J, Khader SA (2021) CXCL17 Is Dispensable during hypervirulent Mycobacterium tuberculosis HN878 infection in mice. ImmunoHorizons. 5:752–7599

  • Choreño-Parra JA, Jiménez-Álvarez LA, Ramírez-Martínez G, Sandoval-Vega M, Salinas-Lara C, Sánchez-Garibay C, Luna-Rivero C, Hernández-Montiel EM, Fernández-López LA, Cabrera-Cornejo MF (2021) CXCL17 is a specific diagnostic biomarker for severe pandemic influenza A (H1N1) that predicts poor clinical outcome. Front Immunol 12:633297

    Article  PubMed  PubMed Central  Google Scholar 

  • Choreño-Parra JA, Thirunavukkarasu S, Zúñiga J, Khader SA (2020) The protective and pathogenic roles of CXCL17 in human health and disease: Potential in respiratory medicine. Cytokine Growth Factor Rev 53:53–62

    Article  PubMed  PubMed Central  Google Scholar 

  • Colobran R, Pujol-Borrell R, Armengol MP, Juan M (2007) The chemokine network. I. How the genomic organization of chemokines contains clues for deciphering their functional complexity. Clin Experimental Immunol 148(2):208–217

    Article  CAS  Google Scholar 

  • Cosi C, Mannaioni G, Cozzi A, Carlà V, Sili M, Cavone L, Maratea D, Moroni F (2011) G-protein coupled receptor 35 (GPR35) activation and inflammatory pain: Studies on the antinociceptive effects of kynurenic acid and zaprinast. Neuropharmacology 60(7–8):1227–1231

    Article  CAS  PubMed  Google Scholar 

  • Dai C, Basilico P, Cremona TP, Collins P, Moser B, Benarafa C, Wolf M (2015) CXCL14 displays antimicrobial activity against respiratory tract bacteria and contributes to clearance of Streptococcus pneumoniae pulmonary infection. J Immunol 194(12):5980–5989

    Article  CAS  PubMed  Google Scholar 

  • Denisov SS (2021) CXCL17: The black sheep in the chemokine flock. Front Immunol :2811

  • Esposito R, Morello S, Vllahu M, Eletto D, Porta A, Tosco A (2017) Gastric TFF1 expression from acute to chronic Helicobacter infection. Front Cell Infect Microbiol 7:434

    Article  PubMed  PubMed Central  Google Scholar 

  • Fermin JM, Alam MM, Gu X, Asarkar A, Nathan C-A, Khandelwal AR (2021) CXCL17 as a prognostic biomarker for aggressive cutaneous squamous cell carcinoma. Cancer Res 81(13Supplement):647–647

    Article  Google Scholar 

  • Fujii Y, Yoshihashi K, Suzuki H, Tsutsumi S, Mutoh H, Maeda S, Yamagata Y, Seto Y, Aburatani H, Hatakeyama M (2012) CDX1 confers intestinal phenotype on gastric epithelial cells via induction of stemness-associated reprogramming factors SALL4 and KLF5. Proceedings of the National Academy of Sciences 109(50): 20584–20589

  • Gong F-h, Xiao X-q, Zhang X-p, Long L, Huang S, Wang X-s Z.-l. Shu and Y.-s. Yang (2019). Association between unstable angina and CXCL17: a new potential biomarker. Open Medicine 14(1):939–944

  • Guo YJ, Zhou YJ, Yang XL, Shao ZM, Ou ZL (2017) The role and clinical significance of the CXCL17-CXCR8 (GPR35) axis in breast cancer. Biochem Biophys Res Commun 493(3):1159–1167

    Article  CAS  PubMed  Google Scholar 

  • Han M, Wang S, Fritah S, Wang X, Zhou W, Yang N, Ni S, Huang B, Chen A, Li G (2020) Interfering with long non-coding RNA MIR22HG processing inhibits glioblastoma progression through suppression of Wnt/β-catenin signalling. Brain 143(2):512–530

    Article  PubMed  Google Scholar 

  • Hao J, Gao X, Wang Y-p, Liu Q, Zhu H, Zhao S-j, Qin Q-h, Meng J, Li L-L, Lin S-C (2022) Expression and clinical significance of CXCL17 and GPR35 in endometrial carcinoma. Anticancer Drugs 33(5):467–477

    Article  CAS  PubMed  Google Scholar 

  • Heinosalo T, Gabriel M, Kallio L, Adhikari P, Huhtinen K, Laajala T, Kaikkonen E, Mehmood A, Suvitie P, Kujari H (2018) Secreted frizzled-related protein 2 (SFRP2) expression promotes lesion proliferation via canonical WNT signaling and indicates lesion borders in extraovarian endometriosis. Hum Reprod 33(5):817–831

    Article  CAS  PubMed  Google Scholar 

  • Hernández-Ruiz M, Othy S, Herrera C, Nguyen HT, Arrevillaga‐Boni G, Catalan‐Dibene J, Cahalan MD, Zlotnik A (2019) Cxcl17–/– mice develop exacerbated disease in a T cell‐dependent autoimmune model. J Leukoc Biol 105(5):1027–1039

    Article  PubMed  Google Scholar 

  • Heuer F, Stürmer R, Heuer J, Kalinski T, Lemke A, Meyer F, Hoffmann W (2019) Different forms of TFF2, a lectin of the human gastric mucus barrier: In vitro binding studies. Int J Mol Sci 20(23):5871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hieshima K, Ohtani H, Shibano M, Izawa D, Nakayama T, Kawasaki Y, Shiba F, Shiota M, Katou F, Saito T (2003) CCL28 has dual roles in mucosal immunity as a chemokine with broad-spectrum antimicrobial activity. J Immunol 170(3):1452–1461

    Article  CAS  PubMed  Google Scholar 

  • Hiraoka N, Yamazaki–Itoh R, Ino Y, Mizuguchi Y, Yamada T, Hirohashi S, Kanai Y (2011) CXCL17 and ICAM2 are associated with a potential anti-tumor immune response in early intraepithelial stages of human pancreatic carcinogenesis. Gastroenterology 140(1):310–321 e314

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann W (2015) TFF2, a MUC6-binding lectin stabilizing the gastric mucus barrier and more. Int J Oncol 47(3):806–816

    Article  CAS  PubMed  Google Scholar 

  • Hromas R, Broxmeyer HE, Kim C, Nakshatri H, Christopherson II K, Azam M, Hou Y-H (1999) Cloning of BRAK, a novel divergent CXC chemokine preferentially expressed in normal versus malignant cells. Biochem Biophys Res Commun 255(3):703–706

    Article  CAS  PubMed  Google Scholar 

  • Hsu Y-L, Yen M-C, Chang W-A, Tsai P-H, Pan Y-C, Liao S-H, Kuo P-L (2019) CXCL17-derived CD11b + Gr-1 + myeloid-derived suppressor cells contribute to lung metastasis of breast cancer through platelet-derived growth factor-BB. Breast Cancer Res 21(1):1–13

    Article  CAS  Google Scholar 

  • Hu J, Chen Y, Li X, Miao H, Li R, Chen D, Wen Z (2019) THUMPD3-AS1 is correlated with non-small cell lung cancer and regulates self-renewal through miR-543 and ONECUT2. OncoTargets Ther 12:9849

    Article  CAS  Google Scholar 

  • Ito T, Carson IV WF, Cavassani KA, Connett JM, Kunkel SL (2011) CCR6 as a mediator of immunity in the lung and gut. Exp Cell Res 317(5):613–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khandelwal AR, Alam MM, Moore-Medlin T, Savage HA, Nathan C-AO (2019) Role of the CXCL17-CXCR8 (GPR35) axis in cutaneous squamous cell carcinoma. Cancer Res 79(13Supplement):1969–1969

    Article  Google Scholar 

  • Khandelwal AR, Kandula RA, Alam MM, Fermin JM, Moore-Medlin T, DiGiovanni J, Nathan C-AO (2022) Targeting CXCL17 (CXC Motif Chemokine Ligand 17) inhibits cutaneous squamous cell carcinoma via modulating angiogenesis. Cancer Res 82(12Supplement):231–231

    Article  Google Scholar 

  • Khandelwal AR, Paralikar AA, Soleja RQ, Temple ZB, Robert MM, Alam M, Nathan C-AO (2020) CXCL17 modulates macrophage polarization and immune cell infiltrate in cutaneous squamous cell carcinoma. Cancer Res 80(16Supplement):3859–3859

    Article  Google Scholar 

  • Kim LC, Song L, Haura EB (2009) Src kinases as therapeutic targets for cancer. Nat reviews Clin Oncol 6(10):587–595

    Article  Google Scholar 

  • Ku C-Y, Wang Y-R, Lin H-Y, Lu S-C, Lin J-Y (2015) Corosolic acid inhibits hepatocellular carcinoma cell migration by targeting the VEGFR2/Src/FAK pathway. PLoS ONE 10(5):e0126725

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee W-Y, Wang C-J, Lin T-Y, Hsiao C-L, Luo C-W (2013) CXCL17, an orphan chemokine, acts as a novel angiogenic and anti-inflammatory factor. Am J Physiology-Endocrinology Metabolism 304(1):E32–E40

    Article  CAS  Google Scholar 

  • Li L, Ji Y, Chen Y-C, Zhen Z-J (2021) MiR-325-3p mediate the CXCL17/CXCR8 axis to regulate angiogenesis in hepatocellular carcinoma. Cytokine 141:155436

    Article  CAS  PubMed  Google Scholar 

  • Li L, Yan J, Xu J, Liu C-Q, Zhen Z-J, Chen H-W, Ji Y, Wu Z-P, Hu J-Y, Zheng L (2014) CXCL17 expression predicts poor prognosis and correlates with adverse immune infiltration in hepatocellular carcinoma. PLoS ONE 9(10):e110064

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Y-z, Liu A-r, Liu S-y, Yan L-r, Yuan Y, Xu Q (2021) The Involvement of CXCL17-GPR35 in Gastric Cancer Initiation and Development.

  • Liu W, Xie X, Wu J (2020) Mechanism of lung adenocarcinoma spine metastasis induced by CXCL17. Cell Oncol 43(2):311–320

    Article  CAS  Google Scholar 

  • Llopis M, Antolin M, Carol M, Borruel N, Casellas F, Martinez C, Espín-Basany E, Guarner F, Malagelada JR (2009) Lactobacillus casei downregulates commensals’ inflammatory signals in Crohn’s disease mucosa. Inflamm Bowel Dis 15(2):275–283

    Article  PubMed  Google Scholar 

  • Loose D, Van de Wiele C (2009) The immune system and cancer. Cancer Biother Radio 24(3):369–376

    CAS  Google Scholar 

  • Luttrell L (2003) ‘Location, location, location’: activation and targeting of MAP kinases by G protein-coupled receptors. J Mol Endocrinol 30(2):117–126

    Article  CAS  PubMed  Google Scholar 

  • MacGregor HL, Garcia-Batres C, Sayad A, Elia A, Berman HK, Toker A, Katz SR, Shaw PA, Clarke BA, Crome SQ (2019) Tumor cell expression of B7-H4 correlates with higher frequencies of tumor-infiltrating APCs and higher CXCL17 expression in human epithelial ovarian cancer. Oncoimmunology 8(12):e1665460

    Article  PubMed  PubMed Central  Google Scholar 

  • Mackenzie A, Lappin J, Taylor D, Nicklin S, Milligan G (2011) GPR35 as a novel therapeutic target. Front Endocrinol 2:68

    Article  CAS  Google Scholar 

  • MacKenzie AE, Caltabiano G, Kent TC, Jenkins L, McCallum JE, Hudson BD, Nicklin SA, Fawcett L, Markwick R, Charlton SJ (2014) The antiallergic mast cell stabilizers lodoxamide and bufrolin as the first high and equipotent agonists of human and rat GPR35. Mol Pharmacol 85(1):91–104

    Article  PubMed  PubMed Central  Google Scholar 

  • Maerki C, Meuter S, Liebi M, Mühlemann K, Frederick MJ, Yawalkar N, Moser B, Wolf M (2009) Potent and broad-spectrum antimicrobial activity of CXCL14 suggests an immediate role in skin infections. J Immunol 182(1):507–514

    Article  CAS  PubMed  Google Scholar 

  • Maravillas-Montero JL, Burkhardt AM, Hevezi PA, Carnevale CD, Smit MJ, Zlotnik A (2015) Cutting edge: GPR35/CXCR8 is the receptor of the mucosal chemokine CXCL17. J Immunol 194(1):29–33

    Article  CAS  PubMed  Google Scholar 

  • Matsui A, Morikawa S, Ezaki T (2015) Possible roles of CXCL17 in angiogenesis during tumor progression. FASEB J 29:926912

    Article  Google Scholar 

  • Matsui A, Yokoo H, Negishi Y, Endo-Takahashi Y, Chun NA, Kadouchi I, Suzuki R, Maruyama K, Aramaki Y, Semba K (2012) CXCL17 expression by tumor cells recruits CD11b + Gr1highF4/80 – cells and promotes tumor progression.

  • Moadab F, Khorramdelazad H, Abbasifard M (2021) Role of CCL2/CCR2 axis in the immunopathogenesis of rheumatoid arthritis: Latest evidence and therapeutic approaches. Life Sci 269:119034

    Article  CAS  PubMed  Google Scholar 

  • Mu X, Chen Y, Wang S, Huang X, Pan H, Li M (2009) Overexpression of VCC-1 gene in human hepatocellular carcinoma cells promotes cell proliferation and invasion. Acta Biochim Biophys Sin 41(8):631–637

    Article  CAS  PubMed  Google Scholar 

  • Niiya K, Ohara H, Isono M, Sheikh AM, Matsuo H, Fujikawa K, Isomura M, Kato N, Nabika T (2018) Further dissection of QTLs for salt-induced stroke and identification of candidate genes in the stroke-prone spontaneously hypertensive rat. Sci Rep 8(1):1–9

    Article  CAS  Google Scholar 

  • Ohlsson L, Hammarström M-L, Lindmark G, Hammarström S, Sitohy B (2016) Ectopic expression of the chemokine CXCL17 in colon cancer cells. Br J Cancer 114(6):697–703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oka T, Sugaya M, Takahashi N, Takahashi T, Shibata S, Miyagaki T, Asano Y, Sato S (2017) CXCL17 attenuates imiquimod-induced psoriasis-like skin inflammation by recruiting myeloid-derived suppressor cells and regulatory T cells. J Immunol 198(10):3897–3908

    Article  CAS  PubMed  Google Scholar 

  • Okumura S, i. H, Baba T, Kumada K, Nanmoku H, Nakajima Y, Nakane K, Hioki, Ikenaka K (2004) Cloning of a G-protein‐coupled receptor that shows an activity to transform NIH3T3 cells and is expressed in gastric cancer cells. Cancer Sci 95(2):131–135

    Article  CAS  PubMed  Google Scholar 

  • Park SJ, Lee SJ, Nam SY, Im DS (2018) GPR35 mediates lodoxamide-induced migration inhibitory response but not CXCL17‐induced migration stimulatory response in THP‐1 cells; is GPR35 a receptor for CXCL17?. Br J Pharmacol 175(1):154–161

    Article  CAS  PubMed  Google Scholar 

  • Perez-Vilar J, Randell SH, Boucher RC (2004) C-Mannosylation of MUC5AC and MUC5B Cys subdomains. Glycobiology 14(4):325–337

    Article  CAS  PubMed  Google Scholar 

  • Pisabarro MT, Leung B, Kwong M, Corpuz R, Frantz GD, Chiang N, Vandlen R, Diehl LJ, Skelton N, Kim HS (2006) Cutting edge: novel human dendritic cell-and monocyte-attracting chemokine-like protein identified by fold recognition methods. J Immunol 176(4):2069–2073

    Article  CAS  PubMed  Google Scholar 

  • Quon T, Lin L-C, Ganguly A, Tobin AB, Milligan G (2020) Therapeutic opportunities and challenges in targeting the orphan G protein-coupled receptor GPR35. ACS Pharmacol Translational Sci 3(5):801–812

    Article  CAS  Google Scholar 

  • Rashad Y, Olsson L, Israelsson A, Öberg Ã, Lindmark G, Hammarström M-L, Hammarström S, Sitohy B (2018) Lymph node CXCL17 messenger RNA: A new prognostic biomarker for colon cancer. Tumor Biology 40(9):1010428318799251

    Article  PubMed  Google Scholar 

  • Rojewska E, Ciapała K, Mika J (2019) Kynurenic acid and zaprinast diminished CXCL17-evoked pain-related behaviour and enhanced morphine analgesia in a mouse neuropathic pain model. Pharmacol Rep 71(1):139–148

    Article  CAS  PubMed  Google Scholar 

  • Ronkainen V-P, Tuomainen T, Huusko J, Laidinen S, Malinen M, Palvimo JJ, Ylä-Herttuala S, Vuolteenaho O, Tavi P (2014) Hypoxia-inducible factor 1-induced G protein-coupled receptor 35 expression is an early marker of progressive cardiac remodelling. Cardiovascular Res 101(1):69–77

    Article  CAS  Google Scholar 

  • Rostène W, Dansereau MA, Godefroy D, Van Steenwinckel J, Goazigo ARL, Mélik-Parsadaniantz S, Apartis E, Hunot S, Beaudet N, Sarret P (2011) Neurochemokines: a menage a trois providing new insights on the functions of chemokines in the central nervous system. J Neurochem 118(5):680–694

    Article  PubMed  Google Scholar 

  • Schaerli P, Moser B (2005) Chemokines. Immunol Res 31(1):57–74

    Article  CAS  PubMed  Google Scholar 

  • Schneditz G, Elias JE, Pagano E, Zaeem Cader M, Saveljeva S, Long K, Mukhopadhyay S, Arasteh M, Lawley TD, Dougan G (2019) GPR35 promotes glycolysis, proliferation, and oncogenic signaling by engaging with the sodium potassium pump. Sci Signal 12(562):eaau9048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sebrell TA, Hashimi M, Sidar B, Wilkinson RA, Kirpotina L, Quinn MT, Malkoç Z, Taylor PJ, Wilking JN, Bimczok D (2019) A novel gastric spheroid co-culture model reveals chemokine-dependent recruitment of human dendritic cells to the gastric epithelium. Cell Mol Gastroenterol Hepatol 8(1):157–171 e153

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharmin O, Abir AH, Potol A, Alam M, Banik J, Rahman A, Tarannum N, Wadud R, Habib ZF, Rahman M (2020) Activation of GPR35 protects against cerebral ischemia by recruiting monocyte-derived macrophages. Sci Rep 10(1):1–13

    Article  Google Scholar 

  • Shimada S, Makino K, Jinnin M, Sawamura S, Kawano Y, Ide M, Kajihara I, Makino T, Fukushima S, Ihn H (2020) CXCL17-mediated downregulation of type I collagen via MMP1 and miR-29 in skin fibroblasts possibly contributes to the fibrosis in systemic sclerosis. J Dermatol Sci 100(3):183–191

    Article  CAS  PubMed  Google Scholar 

  • Sica GL, Choi I-H, Zhu G, Tamada K, Wang S-D, Tamura H, Chapoval AI, Flies DB, Bajorath J, Chen L (2003) B7-H4, a molecule of the B7 family, negatively regulates T cell immunity. Immun 18(6):849–861

    Article  CAS  Google Scholar 

  • Soutto M, Chen Z, Bhat AA, Wang L, Zhu S, Gomaa A, Bates A, Bhat NS, Peng D, Belkhiri A (2019) Activation of STAT3 signaling is mediated by TFF1 silencing in gastric neoplasia. Nat Commun 10(1):1–15

    Article  CAS  Google Scholar 

  • Srivastava R, Hernández-Ruiz M, Khan AA, Fouladi MA, Kim GJ, Ly VT, Yamada T, Lam C, Sarain SA, Boldbaatar U (2018) CXCL17 Chemokine–Dependent Mobilization of CXCR8 + CD8 + Effector Memory and Tissue-Resident Memory T Cells in the Vaginal Mucosa Is Associated with Protection against Genital Herpes. J Immunol 200(8):2915–2926

    Article  CAS  PubMed  Google Scholar 

  • Strieter RM, Polverini PJ, Kunkel SL, Arenberg DA, Burdick MD, Kasper J, Dzuiba J, Van Damme J, Walz A, Marriott D (1995) The functional role of the ELR motif in CXC chemokine-mediated angiogenesis. J Biol Chem 270(45):27348–27357

    Article  CAS  PubMed  Google Scholar 

  • Sun C, Shen H, Cai H, Zhao Z, Gan G, Feng S, Chu P, Zeng M, Deng J, Ming F (2021) Intestinal guard: Human CXCL17 modulates protective response against mycotoxins and CXCL17-mimetic peptides development. Biochem Pharmacol 188:114586

    Article  CAS  PubMed  Google Scholar 

  • Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Cancer J Clin 71(3):209–249

    Article  Google Scholar 

  • Taghavi Y, Hassanshahi G, Kounis NG, Koniari I, Khorramdelazad H (2019) Monocyte chemoattractant protein-1 (MCP-1/CCL2) in diabetic retinopathy: latest evidence and clinical considerations. J cell communication Signal 13(4):451–462

    Article  Google Scholar 

  • Tan Y, Liu L, Zhang X, Xue Y, Gao J, Zhao J, Chi N, Zhu Y (2022) THUMPD3-AS1 is correlated with gastric cancer and regulates cell function through miR-1252-3p and CXCL17. Crit Rev Eukaryot Gene Expr 32(8): 69-80

  • Tateishi Y, Nakanishi Y, Taniguchi H, Shimoda T, Umemura S (2010) Pathological prognostic factors predicting lymph node metastasis in submucosal invasive (T1) colorectal carcinoma. Mod Pathol 23(8):1068–1072

    Article  PubMed  Google Scholar 

  • Thimm D, Funke M, Meyer A, Müller CE (2013) 6-Bromo-8-(4-[3H] methoxybenzamido)-4-oxo-4 H-chromene-2-carboxylic Acid: A Powerful Tool for Studying Orphan G Protein-Coupled Receptor GPR35. J Med Chem 56(17):7084–7099

    Article  CAS  PubMed  Google Scholar 

  • Tsukahara T, Hamouda N, Utsumi D, Matsumoto K, Amagase K, Kato S (2017) G protein-coupled receptor 35 contributes to mucosal repair in mice via migration of colonic epithelial cells. Pharmacol Res 123:27–39

    Article  CAS  PubMed  Google Scholar 

  • Vakilian A, Khorramdelazad H, Heidari P, Rezaei ZS, Hassanshahi G (2017) CCL2/CCR2 signaling pathway in glioblastoma multiforme. Neurochem Int 103:1–7

    Article  CAS  PubMed  Google Scholar 

  • Van de Bovenkamp JH, Mahdavi J, Korteland-Van Male AM, Büller HA, Einerhand AW, Borén T, Dekker J (2003) The MUC5AC glycoprotein is the primary receptor for Helicobacter pylori in the human stomach. Helicobacter 8(5):521–532

    Article  PubMed  Google Scholar 

  • Vicari AP, Figueroa DJ, Hedrick JA, Foster JS, Singh KP, Menon S, Copeland NG, Gilbert D, Jenkins NA, Bacon KB (1997) TECK: a novel CC chemokine specifically expressed by thymic dendritic cells and potentially involved in T cell development. Immun 7(2):291–301

    Article  CAS  Google Scholar 

  • Wang D, Yang L, Yu W, Wu Q, Lian J, Li F, Liu S, Li A, He Z, Liu J (2019) Colorectal cancer cell-derived CCL20 recruits regulatory T cells to promote chemoresistance via FOXO1/CEBPB/NF-κB signaling. J Immunother Cancer 7(1):1–15

    Article  CAS  Google Scholar 

  • Wang J, Chen L, Qu L, Li K, Zhao Y, Wang Z, Li Y, Zhang X, Jin Y, Liang X (2019) Isolation and bioactive evaluation of flavonoid glycosides from Lobelia chinensis Lour using two-dimensional liquid chromatography combined with label-free cell phenotypic assays. J Chromatogr A 1601:224–231

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Li H, Zhen Z, Ma X, Yu W, Zeng H, Li L (2019) CXCL17 promotes cell metastasis and inhibits autophagy via the LKB1-AMPK pathway in hepatocellular carcinoma. Gene 690:129–136

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Han T, Tong W, Zhao J, Qiu X (2018) Overexpression of GPR35 confers drug resistance in NSCLC cells by β-arrestin/Akt signaling. OncoTargets Ther 11:6249

    Article  CAS  Google Scholar 

  • Weinstein EJ, Head R, Griggs DW, Sun D, Evans RJ, Swearingen ML, Westlin MM, Mazzarella R (2006) VCC-1, a novel chemokine, promotes tumor growth. Biochem Biophys Res Commun 350(1):74–81

    Article  CAS  PubMed  Google Scholar 

  • White CW, Kilpatrick LE, Dale N, Abhayawardana RS, Dekkers S, Stocks MJ, Pfleger KD, Hill SJ (2021) CXCL17 is an endogenous inhibitor of CXCR4 via a novel mechanism of action. bioRxiv

  • Xiao S, Xie W, Zhou L (2021) Mucosal chemokine CXCL17: What is known and not known. Scand J Immunol 93(2):e12965

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Sun J, Xiao W, Liu Y, Yue J, Xue L, Deng J, Zhi K, Wang Y (2019) MiR-4513 mediates the proliferation and apoptosis of oral squamous cell carcinoma cells via targeting CXCL17. Eur Rev Med Pharmacol Sci 23(9):3821–3828

    PubMed  Google Scholar 

  • Yajie G, Zhouluo O (2015) IFN-γ increased expression of CXCL17 by breast epithelial cells via a JAK-STAT1-dependent pathway. China Oncology 25(5):321–325

    Google Scholar 

  • Yao H, Lv Y, Bai X, Yu Z, Liu X (2020) Prognostic value of CXCL17 and CXCR8 expression in patients with colon cancer. Oncol Lett 20(3):2711–2720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yashiro M (2014) Ulcerative colitis-associated colorectal cancer. World J Gastroenterology: WJG 20(44):16389

    Article  PubMed Central  Google Scholar 

  • Yoshie O, Imai T, Nomiyama H (2001) Chemokines in immunity. Adv Immunol 78:57–110

    Article  CAS  PubMed  Google Scholar 

  • Yu JB, Schrag D, Robin Yabroff K (2022) Health economics research in cancer treatment: current challenges and future directions. JNCI Monogr 2022(59):51–56

    Article  Google Scholar 

  • Zhang K, Liang Y, Feng Y, Wu W, Zhang H, He J, Hu Q, Zhao J, Xu Y, Liu Z (2018) Decreased epithelial and sputum miR-221-3p associates with airway eosinophilic inflammation and CXCL17 expression in asthma. Am J Physiology-Lung Cell Mol Physiol 315(2):L253–L264

    Article  CAS  Google Scholar 

  • Zhang W, Dahlberg JE, Tam W (2007) MicroRNAs in tumorigenesis: a primer. Am J Pathol 171(3):728–738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao B, Chen Y, Yang N, Chen Q, Bao Z, Liu M, Hu S, Li J, Wu X (2019) miR-218‐5p regulates skin and hair follicle development through Wnt/β‐catenin signaling pathway by targeting SFRP2. J Cell Physiol 234(11):20329–20341

    Article  CAS  PubMed  Google Scholar 

  • Zhao P, Sharir H, Kapur A, Cowan A, Geller EB, Adler MW, Seltzman HH, Reggio PH, Heynen-Genel S, Sauer M (2010) Targeting of the orphan receptor GPR35 by pamoic acid: a potent activator of extracellular signal-regulated kinase and β-arrestin2 with antinociceptive activity. Mol Pharmacol 78(4):560–568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Z, Lu X, Zhu P, Zhu W, Mu X, Qu R, Li M (2012) VCC-1 over-expression inhibits cisplatin-induced apoptosis in HepG2 cells. Biochem Biophys Res Commun 420(2):336–342

    Article  CAS  PubMed  Google Scholar 

  • Zlotnik A, Yoshie O (2000) Chemokines: a new classification system and their role in immunity. Immunity 12(2):121–127

    Article  CAS  PubMed  Google Scholar 

  • Zlotnik A, Yoshie O, Nomiyama H (2006) The chemokine and chemokine receptor superfamilies and their molecular evolution. Genome Biol 7(12):1–11

    Article  Google Scholar 

Download references

Acknowledgements

Rafsanjan University of Medical Sciences supported this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Khorramdelazad.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashemi, S.F., Khorramdelazad, H. The cryptic role of CXCL17/CXCR8 axis in the pathogenesis of cancers: a review of the latest evidence. J. Cell Commun. Signal. 17, 409–422 (2023). https://doi.org/10.1007/s12079-022-00699-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12079-022-00699-7

Keywords

Navigation