The GVAR approach was originally proposed by Pesaran et al. (2004b) and constitutes a large-dimensional but simple model for modelling complex interrelated systems such as the global economy. One key feature of a GVAR model is that it allows for interdependence at multiple levels, thus allowing national and international dynamics to be empirically evaluated in a consistent and transparent manner. Additionally, GVAR specifications enable to reflect dynamics that are consistent with theory (long-run equilibria), while matching short-run adjustment dynamics.
A GVAR model consists of a set of individual country VARX* models, which are linked in order to yield a global model. For each country a VARX*\((p_i,q_i)\) specification is constructed as follows
$$\begin{aligned} \mathbf {x}_{it}&= \mathbf {a}_{i0} + \mathbf {a}_{i1}t + {\varvec{\Phi }}_{i1} \mathbf {x}_{i,t-1} + \cdots + {\varvec{\Phi }}_{ip_{i}} \mathbf {x}_{i,t-p_{i}}\nonumber \\&\quad \;+ \varvec{\Lambda }_{i0} \mathbf {x}^{*}_{it} + \varvec{\Lambda }_{i1} \mathbf {x}^{*}_{i,t-1} + \cdots + \varvec{\Lambda }_{iq_{i}} \mathbf {x}^{*}_{i,t-q_{i}} + \mathbf {u}_{it}, \end{aligned}$$
(1)
where \(\mathbf {x}_{it}\) is a k-dimensional column vector of domestic variables for country i in period t, \(\mathbf {a}_{i0}\) is a vector of constants, \(\mathbf {a}_{i1}t\) is a linear trend, \(\mathbf {x}^{*}_{it}\) are \(k^*\)-dimensional column vectors of weighted foreign variables (assumed weakly exogenous) and \(\mathbf {u}_{it}\) is a k-dimensional column vector of serially uncorrelated error terms. \({\varvec{\Phi }}_{it}\) and \(\varvec{\Lambda }_{it}\) are the corresponding coefficient matrices. The foreign variables \(\mathbf {x}^*_{it}\) in a GVAR model are constructed as weighted averages of other countries’ domestic variables
$$\begin{aligned} \mathbf {x}^*_{it} = \sum \limits _{j=0}^{N}w_{ij}\mathbf {x}_{jt}, \quad w_{ii}=0 \end{aligned}$$
(2)
with \(w_{ij}, \, j = 0,1,\ldots ,N\) being a set of weights such that \(\sum _{j=0}^{N}w_{ij}=1\).
Defining a vector that stacks domestic and foreign variables, \(\mathbf {z}_{it}= ( \mathbf {x}_{it} \mathbf {x}_{it}^{*})'\), we can write Eq. (1) as
$$\begin{aligned} \mathbf {A}_{i0}\mathbf {z}_{it} = \mathbf {a}_{i0} + \mathbf {a}_{i1}t + \mathbf {A}_{i1}\mathbf {z}_{it-1}+ \cdots + \mathbf {A}_{ip_{i}}\mathbf {z}_{it-p_{i}} + \mathbf {u}_{it}, \end{aligned}$$
(3)
where
$$\begin{aligned} \mathbf {A}_{i0} = (\mathbf {I}_{k_i},-\mathbf {\Lambda }_{i0}), \quad \mathbf {A}_{ij} = ({\varvec{\Phi }}_{ij},\mathbf {\Lambda }_{ij}) \quad \text {for} \, j=1,\ldots ,p_i. \end{aligned}$$
Using the link matrix \(\mathbf {W}_i\), \(\mathbf {z}_{it}\) can be written as \(\mathbf {z}_{it} = \mathbf {W}_i\mathbf {x}_t\), where \(\mathbf {x}_t\) is a \(K\times 1\) vector including all endogenous variables of the system and \(\mathbf {W}_i\) is a \((k_i+k_i^*)\times k\) matrix which contains the weights capturing bilateral exposures between the countries under investigation.
Using this transformation, Eq. (1) can be written as
$$\begin{aligned} \mathbf {A}_{i0}\mathbf {W}_i\mathbf {x}_t = \mathbf {a}_{i0} + \mathbf {a}_{i1}t + \mathbf {A}_{i1}\mathbf {W}_i\mathbf {x}_{t-1} + \cdots + \mathbf {A}_{ip_i}\mathbf {W}_i\mathbf {x}_{t-p_i} + \mathbf {u}_{it}, \quad \text {for} \, i = 0,1,2,\ldots ,N, \end{aligned}$$
(4)
which yields the global model when stacking all the individual country VARX* models. This global specification is specified as
$$\begin{aligned} \mathbf {G}_0\mathbf {x}_t = \mathbf {a}_0 + \mathbf {a}_1\mathbf {t} + \mathbf {G}_1\mathbf {x}_{t-1} + \cdots + \mathbf {G}_p\mathbf {x}_{t-p} + \mathbf {u}_t, \end{aligned}$$
(5)
where \(\mathbf {G}_0 = ( \mathbf {A}_{00}\mathbf {W}_0 \mathbf {A}_{10}\mathbf {W}_1 \cdots \mathbf {A}_{N0}\mathbf {W}_N )'\), \( \mathbf {G}_j = ( \mathbf {A}_{0j}\mathbf {W}_0 \mathbf {A}_{1j}\mathbf {W}_1 \cdots \mathbf {A}_{Nj}\mathbf {W}_N )'\) for \(j = 1,2,\ldots ,p;\)
\( \mathbf {a}_0 = ( \mathbf {a}_{00} \mathbf {a}_{10} \cdots \mathbf {a}_{N0} )'\), \( \mathbf {a}_1 = ( \mathbf {a}_{01} \mathbf {a}_{11} \cdots \mathbf {a}_{N1})' \), \( \mathbf {u}_t = (\mathbf {u}_{0t} \mathbf {u}_{1t} \cdots \mathbf {u}_{Nt})'\) and \(p = \text {max}\,p_i\) across all i. In general \(p = \text {max}(\text {max}\,p_i, \text {max}\,q_i)\). Premultiplying with \(\mathbf {G}_0^{-1}\) yields the autoregressive representation of the GVAR(p) model
$$\begin{aligned} \mathbf {x}_t = \mathbf {b}_0 + \mathbf {b}_1{t} + \mathbf {F}_1\mathbf {x}_{t-1} + \cdots + \mathbf {F}_p\mathbf {x}_{t-p} + \varvec{\epsilon }_t, \end{aligned}$$
(6)
where \(\mathbf {b}_0 = \mathbf {G}_0^{-1}\mathbf {a}_0, \quad \mathbf {b}_1 = \mathbf {G}_0^{-1}\mathbf {a}_1, \mathbf {F}_j = \mathbf {G}_0^{-1}\mathbf {G}_j\) for \(j = 1,2,\ldots ,p\) and \(\varvec{\epsilon }_t = \mathbf {G}_0^{-1}\mathbf {u}_t\). Once estimates of the parameters are available, Eq. (6) can be solved recursively and used for producing forecasts and constructing impulse response functions in the framework of GVAR models.
The standard procedure to specify and estimate a GVAR model proposed by Pesaran et al. (2004b) starts by estimating each country-specific VARX* model separately in its error correction form,
$$\begin{aligned} \Delta \mathbf {x}_{it} = \mathbf {c}_{i0} - \varvec{\alpha }_i\varvec{\beta }_i^{'}[\mathbf {z}_{i,t-1} - \varvec{\gamma }_i(t-1)] + \varvec{\Lambda }_{i0}\Delta \mathbf {x}_{it}^* + \varvec{\Gamma }_i\Delta \mathbf {z}_{i,t-1} + \mathbf {u}_{it}, \end{aligned}$$
(7)
where \(\mathbf {z}_{it} = (\mathbf {x}_{it}^{'} \mathbf {x}_{it}^{*'})^{'},\,\varvec{\alpha }_i\) is a \(k_i \times r_i\) matrix of rank \(r_i\) and \(\varvec{\beta }_i\) is a \((k_i + k_i^*) \times r_i\) matrix of rank \(r_i\). Conditional on \(\mathbf {x}_{it}^*\) the individual VARX* models are estimated using reduced rank regression, treating the foreign variables as weakly exogenous. Johansen’s trace statistic is used to determine the rank order of each country VARX* model. The lag orders of the domestic and foreign variables, \(p_i\) and \(q_i\) respectively, are determined using Akaike’s information criterion, in our application with an assumed maximum lag order of \(p = 2\) and \(q = 1\).