Skip to main content
Log in

How non-alcoholic fatty liver disease and cirrhosis affect the heart

  • Review Article
  • Published:
Hepatology International Aims and scope Submit manuscript

Abstract

Liver diseases affect the heart and the vascular system. Cardiovascular complications appear to be a leading cause of death in patients with non-alcoholic fatty liver disease (NAFLD) and cirrhosis. The predominant histological changes in the liver range from steatosis to fibrosis to cirrhosis, which can each affect the cardiovascular system differently. Patients with cirrhotic cardiomyopathy (CCM) and NAFLD are at increased risk of impaired systolic and diastolic dysfunction and for suffering major cardiovascular events. However, the pathophysiological mechanisms behind these risks differ depending on the nature of the liver disease. Accurate assessment of symptoms by contemporary diagnostic modalities is essential for identifying patients at risk, for evaluating candidates for treatment, and prior to any invasive procedures. This review explores current perspectives within this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Since the Figure is a proposal an availability statement is not applicable.

References

  1. Møller S, Bernardi M. Interactions of the heart and the liver. Eur Heart J. 2013;34:2804–2811

    PubMed  Google Scholar 

  2. Gassanov N, Caglayan E, Semmo N, Massenkeil G, Er F. Cirrhotic cardiomyopathy: a cardiologist’s perspective. World J Gastroenterol. 2014;20:15492–15498

    PubMed  PubMed Central  Google Scholar 

  3. Arroyo V, Angeli P, Moreau R, Jalan R, Claria J, Trebicka J, et al. The systemic inflammation hypothesis: towards a new paradigm of acute decompensation and multiorgan failure in cirrhosis. J Hepatol. 2020;74:670–685

    PubMed  Google Scholar 

  4. Krag A, Bendtsen F, Burroughs AK, Møller S. The cardiorenal link in advanced cirrhosis. Med Hypotheses. 2012;79:53–55

    PubMed  Google Scholar 

  5. Raevens S, Geerts A, Van Steenkiste C, Verhelst X, Van Vlierberghe H, Colle I. Hepatopulmonary syndrome and portopulmonary hypertension: recent knowledge in pathogenesis and overview of clinical assessment. Liver Int. 2015;35:1646–1660

    PubMed  Google Scholar 

  6. Møller S, Bendtsen F. Cirrhotic multiorgan syndrome. Dig Dis Sci. 2015;60:3209–3225

    PubMed  Google Scholar 

  7. Møller S, Bendtsen F. The pathophysiology of arterial vasodilatation and hyperdynamic circulation in cirrhosis. Liver Int. 2018;38:570–580

    PubMed  Google Scholar 

  8. Alvarado E, Garcia-Guix M, Mirabet S, Villanueva C. The relationship of hyperdynamic circulation and cardiodynamic states in cirrhosis. J Hepatol. 2018;69:746–747

    PubMed  Google Scholar 

  9. Praktiknjo M, Monteiro S, Grandt J, Kimer N, Madsen JL, Werge MP, et al. Cardiodynamic state is associated with systemic inflammation and fatal acute-on-chronic liver failure. Liver Int. 2020;40:1457–1466

    CAS  PubMed  Google Scholar 

  10. Perello A, Inserte J, Godoy A, Puigfel Y, Garcia-Pagan JC, Garcia-Dorado D, et al. Cardiac structure and function in experimental intra-hepatic portal hypertension. J Hepatol. 2000;32:65

    Google Scholar 

  11. Hallsworth K, Hollingsworth KG, Thoma C, Jakovljevic D, Macgowan GA, Anstee QM, et al. Cardiac structure and function are altered in adults with non-alcoholic fatty liver disease. J Hepatol. 2012;58:757–762

    PubMed  Google Scholar 

  12. Anstee QM, Mantovani A, Tilg H, Targher G. Risk of cardiomyopathy and cardiac arrhythmias in patients with nonalcoholic fatty liver disease. Nat Rev Gastroenterol Hepatol. 2018;15:425–439

    PubMed  Google Scholar 

  13. Izzy M, Oh J, Watt KD. Cirrhotic cardiomyopathy after transplantation: Neither the transient nor innocent bystander. Hepatology. 2018;68:10

    Google Scholar 

  14. Møller S, Danielsen KV, Wiese S, Hove JD, Bendtsen F. An update on cirrhotic cardiomyopathy. Expert Rev Gastroenterol Hepatol. 2019;13:10

    Google Scholar 

  15. Wehmeyer MH, Heuer AJ, Benten D, Puschel K, Sydow K, Lohse AW, et al. High rate of cardiac abnormalities in a postmortem analysis of patients suffering from Liver cirrhosis. J Clin Gastroenterol. 2015;49:866–872

    PubMed  Google Scholar 

  16. Younossi ZM, Henry L, Bush H, Mishra A. Clinical and economic burden of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Clin Liver Dis. 2018;22:1–10

    PubMed  Google Scholar 

  17. Loomba R, Wong R, Fraysse J, Shreay S, Li S, Harrison S, et al. Nonalcoholic fatty liver disease progression rates to cirrhosis and progression of cirrhosis to decompensation and mortality: a real world analysis of Medicare data. Aliment Pharmacol Ther. 2020;51:1149–1159

    CAS  PubMed  Google Scholar 

  18. Targher G, Byrne CD, Tilg H. NAFLD and increased risk of cardiovascular disease: clinical associations, pathophysiological mechanisms and pharmacological implications. Gut. 2020;69:1691–1705

    CAS  PubMed  Google Scholar 

  19. Vanwagner LB, Wilcox JE, Ning H, Lewis CE, Carr JJ, Rinella ME, et al. Longitudinal association of non-alcoholic fatty liver disease with changes in myocardial structure and function: The CARDIA Study. J Am Heart Assoc. 2020;9: e014279

    PubMed  PubMed Central  Google Scholar 

  20. Brouwers MCGJ, Simons N, Stehouwer CDA, Isaacs A. Non-alcoholic fatty liver disease and cardiovascular disease: assessing the evidence for causality. Diabetologia. 2020;63:253–260

    CAS  PubMed  Google Scholar 

  21. Isaak A, Praktiknjo M, Jansen C, Faron A, Sprinkart AM, Pieper CC, et al. Myocardial fibrosis and inflammation in liver cirrhosis: MRI Study of the liver-heart axis. Radiology. 2020;297:51–61

    PubMed  Google Scholar 

  22. Njoku DB, Schilling JD, Finck BN. Mechanisms of nonalcoholic steatohepatitis-associated cardiomyopathy: key roles for liver-heart crosstalk. Curr Opin Lipidol. 2022;33:295–299

    CAS  PubMed  Google Scholar 

  23. Bosch J, Iwakiri Y. The portal hypertension syndrome: etiology, classification, relevance, and animal models. Hepatol Int. 2018;12:1–10

    PubMed  Google Scholar 

  24. Iwakiri Y, Trebicka J. Portal hypertension in cirrhosis: pathophysiological mechanisms and therapy. JHEP Rep. 2021;3: 100316

    PubMed  PubMed Central  Google Scholar 

  25. Engelmann C, Clària J, Szabo G, Bosch J, Bernardi M. Pathophysiology of decompensated cirrhosis: Portal hypertension, circulatory dysfunction, inflammation, metabolism and mitochondrial dysfunction. J Hepatol. 2021;75(Suppl 1):S49-s66

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Gustot T, Stadlbauer V, Laleman W, Alessandria C, Thursz M. Transition to decompensation and acute-on-chronic liver failure: Role of predisposing factors and precipitating events. J Hepatol. 2021;75(Suppl 1):S36-s48

    PubMed  Google Scholar 

  27. Voiosu A, Wiese S, Voiosu T, Bendtsen F, Møller S. Bile acids and cardiovascular function in cirrhosis. Liver Int. 2017;37:1420–1430

    CAS  PubMed  Google Scholar 

  28. Vasavan T, Ferraro E, Ibrahim E, Dixon P, Gorelik J, Williamson C. Heart and bile acids—clinical consequences of altered bile acid metabolism. Biochim Biophys Acta Mol Basis Dis. 2018;1864:1345–1355

    CAS  PubMed  Google Scholar 

  29. Desai MS. Mechanistic insights into the pathophysiology of cirrhotic cardiomyopathy. Anal Biochem. 2021;636:114388

    PubMed  Google Scholar 

  30. Sorribas M, Jakob MO, Yilmaz B, Li H, Stutz D, Noser Y, et al. FxR-modulates the gut-vascular barrier by regulating the entry sites for bacterial translocation in experimental cirrhosis. J Hepatol. 2019;71:1126–1140

    CAS  PubMed  Google Scholar 

  31. Bellot P, Garcia-Pagan JC, Frances R, Abraldes JG, Navasa M, Perez-Mateo M, et al. Bacterial DNA translocation is associated with systemic circulatory abnormalities and intrahepatic endothelial dysfunction in patients with cirrhosis. Hepatology. 2010;52:2044–2052

    CAS  PubMed  Google Scholar 

  32. Arab JP, Arrese M, Shah VH. Gut microbiota in non-alcoholic fatty liver disease and alcohol-related liver disease: current concepts and perspectives. Hepatol Res. 2020;50:407–418

    PubMed  PubMed Central  Google Scholar 

  33. Albillos A, de Gottardi A, Rescigno M. The gut-liver axis in liver disease: pathophysiological basis for therapy. J Hepatol. 2020;72:558–577

    CAS  PubMed  Google Scholar 

  34. Arroyo V. Microalbuminuria, systemic inflammation, and multiorgan dysfunction in decompensated cirrhosis: evidence for a nonfunctional mechanism of hepatorenal syndrome. Hepatol Int. 2017;11:242–244

    PubMed  Google Scholar 

  35. Coenraad MJ, Porcher R, Bendtsen F. Hepatic and cardiac hemodynamics and systemic inflammation in cirrhosis: it takes three to tango. J Hepatol. 2018;68:887–889

    CAS  PubMed  Google Scholar 

  36. Bernardi M, Caraceni P. Novel perspectives in the management of decompensated cirrhosis. Nat Rev Gastroenterol Hepatol. 2018;15:753–764

    CAS  PubMed  Google Scholar 

  37. Turco L, Garcia-Tsao G, Magnani I, Bianchini M, Costetti M, Caporali C, et al. Cardiopulmonary hemodynamics and c-reactive protein as prognostic indicators in compensated and decompensated cirrhosis. J Hepatol. 2018;68:949–958

    CAS  PubMed  Google Scholar 

  38. Lunseth JH, Olmstead EG, Abboud F. A study of heart disease in one hundred eight hospitalized patients dying with portal cirrhosis. AMA Arch Intern Med. 1958;102:405–413

    CAS  PubMed  Google Scholar 

  39. Saner FH, Neumann T, Canbay A, Treckmann JW, Hartmann M, Goerlinger K, et al. High brain-natriuretic peptide level predicts cirrhotic cardiomyopathy in liver transplant patients. Transpl Int. 2011;24:425–432

    CAS  PubMed  Google Scholar 

  40. Ben Hammouda S, Grayaa M, Njima M, Mabrouk S, Boussaid M, Aissaoui A, et al. Sudden death due to cirrhotic cardiomyopathy: an autopsy case report. J Forensic Leg Med. 2022;89: 102369

    PubMed  Google Scholar 

  41. Jellis CL, Kwon DH. Myocardial T1 mapping: modalities and clinical applications. Cardiovasc Diagn Ther. 2014;4:126–137

    PubMed  PubMed Central  Google Scholar 

  42. Glenn TK, Honar H, Liu H, Keurs H, Lee SS. Role of cardiac myofilament proteins titin and collagen in the pathogenesis of diastolic dysfunction in cirrhotic rats. J Hepatol. 2011;55:1249–1255

    CAS  PubMed  Google Scholar 

  43. Honar H, Liu H, Zhang ML, Glenn TK, Ter Keurs HEDJ, Lee SS. Impaired myosin isoform shift and calcium transients contribute to cellular pathogenesis of rat cirrhotic cardiomyopathy. Liver Int. 2020;40:2808–2819

    CAS  PubMed  Google Scholar 

  44. Liu H, Yoon KT, Zhang J, Lee SS. Advances in cirrhotic cardiomyopathy. Curr Opin Gastroenterol. 2021;37:187–193

    CAS  PubMed  Google Scholar 

  45. Cesari M, Frigo AC, Tonon M, Angeli P. Cardiovascular predictors of death in patients with cirrhosis. Hepatology. 2018;68:215–223

    PubMed  Google Scholar 

  46. Wiese S, Liang M, Mo S, Bendtsen F, Hove JD, Møller S. Left atrial volume changes assessed by real time 3-dimensional echocardiography in relation to liver function and prognosis in patients with cirrhosis. Int J Cardiovasc Imaging. 2020;36:2121–2127

    PubMed  Google Scholar 

  47. Rector WGJ, Hossack KF. Pathogenesis of sodium retention complicating cirrhosis: is there room for diminished “effective” arterial blood volume? Gastroenterology. 1988;95:1658–1663

    PubMed  Google Scholar 

  48. Møller S, Søndergaard L, Møgelvang J, Henriksen O, Henriksen JH. Decreased right heart blood volume determined by magnetic resonance imaging: evidence of central underfilling in cirrhosis. Hepatology. 1995;22:472–478

    PubMed  Google Scholar 

  49. Lewis FW, Adair O, Rector WG. Arterial vasodilation is not the cause of increased cardiac output in cirrhosis. Gastroenterology. 1992;102:1024–1029

    CAS  PubMed  Google Scholar 

  50. Wong F, Liu P, Lilly L, Bomzon A, Blendis L. Role of cardiac structural and functional abnormalities in the pathogenesis of hyperdynamic circulation and renal sodium retention in cirrhosis. Clin Sci. 1999;97:259–267

    CAS  Google Scholar 

  51. Wong F, Liu P, Lilly L, Bomzon A, Blendis L. Role of cardiac structural and functional abnormalities in the pathogenesis of hyperdynamic circulation and renal sodium retention in cirrhosis. Clin Sci (Lond). 1999;97:259–267

    CAS  PubMed  Google Scholar 

  52. Valeriano V, Funaro S, Lionetti R, Riggio O, Pulcinelli G, Fiore P, et al. Modification of cardiac function in cirrhotic patients with and without ascites. Am J Gastroenterol. 2000;95:3200–3205

    CAS  PubMed  Google Scholar 

  53. Wong F, Girgrah N, Graba J, Allidina Y, Liu P, Blendis L. The cardiac response to exercise in cirrhosis. Gut. 2001;49:268–275

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Sampaio F, Pimenta J, Bettencourt N, Fontes-Carvalho R, Silva AP, Valente J, et al. Systolic dysfunction and diastolic dysfunction do not influence medium-term prognosis in patients with cirrhosis. Eur J Intern Med. 2014;25:246

    Google Scholar 

  55. Ruiz-Del-Arbol L, Achecar L, Serradilla R, Rodriguez-Gandia MA, Rivero M, Garrido E, et al. Diastolic dysfunction is a predictor of poor outcomes in patients with cirrhosis, portal hypertension and a normal creatinine. Hepatology. 2013;58:1732–1742

    CAS  PubMed  Google Scholar 

  56. Wiese S, Hove JD, Mo S, Mygind ND, Tonnesen J, Petersen CL, et al. Cardiac dysfunction in cirrhosis: a 2-year longitudinal follow-up study using advanced cardiac imaging. Am J Physiol Gastrointest Liver Physiol. 2019;317:G253–G263

    CAS  PubMed  Google Scholar 

  57. Merli M, Torromeo C, Giusto M, Iacovone G, Riggio O, Puddu PE. Survival at 2 years among liver cirrhotic patients is influenced by left atrial volume and left ventricular mass. Liver Int. 2017;37:700–706

    PubMed  Google Scholar 

  58. Puchades L, Chau S, Dodson JA, Mohamad Y, Mustain R, Lebsack A, et al. Association of cardiac abnormalities to the frail phenotype in cirrhotic patients on the waitlist: From the functional assessment in liver transplantation study. Transplantation. 2018;102:e101–e107

    PubMed  PubMed Central  Google Scholar 

  59. Gunay N, Erdem S, Guvenc TS, Bulur A, Ozdil K, Hasdemir H, et al. Morphologic and functional changes in right-sided cardiac chambers in patients with chronic liver disease and normal pulmonary artery pressure. J Ultrasound Med. 2018;37:1681–1691

    PubMed  Google Scholar 

  60. Ortiz-Olvera NX, Castellanos-Pallares G, Gómez-Jiménez LM, Cabrera-Muñoz ML, Méndez-Navarro J, Morán-Villota S, et al. Anatomical cardiac alterations in liver cirrhosis: an autopsy study. Ann Hepatol. 2011;10:321–326

    PubMed  Google Scholar 

  61. De Marco M, Chinali M, Romano C, Benincasa M, D’Addeo G, D’Agostino L, et al. Increased left ventricular mass in pre-liver transplantation cirrhotic patients. J Cardiovasc Med (Hagerstown). 2008;9:142–146

    PubMed  Google Scholar 

  62. Yotti R, Bermejo J, Benito Y, Sanz-Ruiz R, Ripoll C, Martinez-Legazpi P, et al. Validation of noninvasive indices of global systolic function in patients with normal and abnormal loading conditions: a simultaneous echocardiography pressure-volume catheterization study. Circ Cardiovasc Imaging. 2014;7:164–172

    PubMed  Google Scholar 

  63. Nazar A, Guevara M, Sitges M, Terra C, Sola E, Guigou C, et al. Left ventricular function assessed by echocardiography in cirrhosis: Relationship to systemic hemodynamics and renal dysfunction. J Hepatol. 2013;58:51–57

    PubMed  Google Scholar 

  64. Desai MS, Shabier Z, Taylor M, Lam F, Thevananther S, Kosters A, et al. Hypertrophic cardiomyopathy and dysregulation of cardiac energetics in a mouse model of biliary fibrosis. Hepatology. 2010;51:2097–2107

    CAS  PubMed  Google Scholar 

  65. Henriksen JH, Gøetze JP, Fuglsang S, Christensen E, Bendtsen F, Møller S. Increased circulating pro-brain natriuretic peptide (proBNP) and brain natriuretic peptide (BNP) in patients with cirrhosis Relation to cardiovascular dysfunction and severity of disease. Gut. 2003;52:1511–1517

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Wiese S, Voiosu A, Hove JD, Danielsen KV, Voiosu T, GrÃ,nbaek H, et al. Fibrogenesis and inflammation contribute to the pathogenesis of cirrhotic cardiomyopathy. Aliment Pharmacol Ther. 2020;52:340–350

    CAS  PubMed  Google Scholar 

  67. Wiese S, Hove J, Mo S, Mookerjee RP, Petersen CL, Vester-Andersen MK, et al. Myocardial extracellular volume quantified by magnetic resonance is increased in cirrhosis and related to poor outcome. Liver Int. 2018;10:1614–1623

    Google Scholar 

  68. Liu H, Gaskari SA, Lee SS. Cardiac and vascular changes in cirrhosis: pathogenic mechanisms. World J Gastroenterol. 2006;12:837–842

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Møller S, Wiese S, Halgreen H, Hove JD. Diastolic dysfunction in cirrhosis. Heart Fail Rev. 2016;21:599–610

    PubMed  Google Scholar 

  70. Wiese S, Hove JD, Moller S. Cardiac imaging in patients with chronic liver disease. Clin Physiol Funct Imaging. 2017;37:347–356

    PubMed  Google Scholar 

  71. Isaak A, Chang J, Mesropyan N, Kravchenko D, Endler C, Bischoff L, et al. Cardiac involvement in non-cirrhotic portal hypertension: MRI detects myocardial fibrosis and oedema similar to compensated cirrhosis. Eur Heart J Cardiovasc Imaging. 2022;24:949–960

    Google Scholar 

  72. Møller S, Hove JD, Dixen U, Bendtsen F. New insights into cirrhotic cardiomyopathy. Int J Cardiol. 2013;167:1101–1108

    PubMed  Google Scholar 

  73. Raevens S, Boret M, De Pauw M, Fallon MB, Van Vlierberghe H. Pulmonary abnormalities in liver disease: relevance to transplantation and outcome. Hepatology. 2021;74:1674–1686

    PubMed  Google Scholar 

  74. Koshy AN, Farouque O, Cailes B, Testro A, Ramchand J, Sajeev JK, et al. Impaired cardiac reserve on dobutamine stress echocardiography predicts the development of hepatorenal syndrome. Am J Gastroenterol. 2020;115:388–397

    PubMed  Google Scholar 

  75. Desai MS. Mechanistic insights into the pathophysiology of cirrhotic cardiomyopathy. Anal Biochem. 2022;636: 114388

    CAS  PubMed  Google Scholar 

  76. Krag A, Bendtsen F, Mortensen C, Henriksen JH, Møller S. Effects of a single terlipressin administration on cardiac function and perfusion in cirrhosis. Eur J Gastroenterol Hepatol. 2010;22:1085–1092

    CAS  PubMed  Google Scholar 

  77. Sampaio F, Lamata P, Bettencourt N, Alt SC, Ferreira N, Kowallick JT, et al. Assessment of cardiovascular physiology using dobutamine stress cardiovascular magnetic resonance reveals impaired contractile reserve in patients with cirrhotic cardiomyopathy. J Cardiovasc Magn Reson. 2015;17:61–0157

    PubMed  PubMed Central  Google Scholar 

  78. Danielsen KV, Wiese S, Busk T, Nabilou P, Kronborg TM, Petersen CL, et al. Cardiovascular mapping in cirrhosis from the compensated stage to hepatorenal syndrome: a magnetic resonance Study. Am J Gastroenterol. 2022;117:1269–1278

    CAS  PubMed  Google Scholar 

  79. Busk TM, Bendtsen F, Møller S. Cardiac and renal effects of a transjugular intrahepatic portosystemic shunt in cirrhosis. Eur J Gastroenterol Hepatol. 2013;25:523–530

    PubMed  Google Scholar 

  80. Merli M, Valeriano V, Funaro S, Attili AF, Masini A, Efrati C, et al. Modifications of cardiac function in cirrhotic patients treated with transjugular intrahepatic portosystemic shunt (TIPS). Am J Gastroenterol. 2002;97:142–148

    PubMed  Google Scholar 

  81. Kazankov K, Holland-Fischer P, Andersen NH, Torp P, Sloth E, Aagaard NK, et al. Resting myocardial dysfunction in cirrhosis quantified by tissue Doppler imaging. Liver Int. 2011;31:534–540

    PubMed  Google Scholar 

  82. Mechelinck M, Hartmann B, Hamada S, Becker M, Andert A, Ulmer TF, et al. Global longitudinal strain at rest as an independent predictor of mortality in liver transplant candidates: a retrospective clinical study. J Clin Med. 2020;9:E2616

    Google Scholar 

  83. Izzy M, Vanwagner LB, Lin G, Altieri M, Findlay JY, Oh JK, et al. Redefining cirrhotic cardiomyopathy for the modern era. Hepatology. 2020;71:345

    Google Scholar 

  84. Liu H, Lee SS. Diagnostic criteria of cirrhotic cardiomyopathy: out with the old, in with the new? Hepatology. 2021;74:3523–3525

    PubMed  Google Scholar 

  85. Kazory A, Ronco C. Hepatorenal syndrome or hepatocardiorenal syndrome: Revisiting basic concepts in view of emerging data. Cardiorenal Med. 2019;9:1–7

    PubMed  Google Scholar 

  86. Bradley CR, Cox EF, Scott RA, James MW, Kaye P, Aithal GP, et al. Multi-organ assessment of compensated cirrhosis patients using quantitative magnetic resonance imaging. J Hepatol. 2018;69:1024

    Google Scholar 

  87. Nagueh SF, Smiseth OA, Appleton CP, Byrd BF III, Dokainish H, Edvardsen T, et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: An update from the american society of echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2016;17:1321–1360

    PubMed  Google Scholar 

  88. Liu H, Jayakumar S, Traboulsi M, Lee SS. Cirrhotic cardiomyopathy: implications for liver transplantation. Liver Transpl. 2017;23:826–835

    PubMed  Google Scholar 

  89. Wong F, Villamil A, Merli M, Romero G, Angeli P, Caraceni P, et al. Prevalence of diastolic dysfunction in cirrhosis and its clinical significance. Hepatology. 2011;54:475A

    Google Scholar 

  90. Karagiannakis DS, Vlachogiannakos J, Anastasiadis G, Vafiadis-Zouboulis I, Ladas SD. Diastolic cardiac dysfunction is a predictor of dismal prognosis in patients with liver cirrhosis. Hepatol Int. 2014;8:588–594

    PubMed  Google Scholar 

  91. Razpotnik M, Bota S, Wimmer P, Hackl M, Lesnik G, Alber H, et al. The prevalence of cirrhotic cardiomyopathy according to different diagnostic criteria. Liver Int. 2021;41:1058–1069

    PubMed  Google Scholar 

  92. Carvalheiro F, Rodrigues C, Adrego T, Viana J, Vieira H, Seco C, et al. Diastolic dysfunction in liver cirrhosis: prognostic predictor in liver transplantation? Transplant Proc. 2016;48:128–131

    CAS  PubMed  Google Scholar 

  93. Izzy MJ, VanWagner LB. Current concepts of cirrhotic cardiomyopathy. Clin Liver Dis. 2021;25:471–481

    PubMed  PubMed Central  Google Scholar 

  94. Busk TM, Bendtsen F, Poulsen JH, Clemmesen JO, Larsen FS, Goetze JP, et al. Transjugular intrahepatic portosystemic shunt: impact on systemic hemodynamics and renal and cardiac function in patients with cirrhosis. Am J Physiol Gastrointest Liver Physiol. 2018;314:G275–G286

    PubMed  Google Scholar 

  95. Cazzaniga M, Salerno F, Pagnozzi G, Dionigi E, Visentin S, Cirello I, et al. Diastolic dysfunction is associated with poor survival in cirrhotic patients with transjugular intrahepatic portosystemic shunt. Gut. 2007;56:869–875

    PubMed  PubMed Central  Google Scholar 

  96. Shounak M, Vimal R, Colin S, David IS. A retrospective analysis of the impact of diastolic dysfunction on one-year mortality after transjugular intrahepatic porto-systemic shunt, liver transplantation and non-transplant abdominal surgery in patients with cirrhosis. Ann Gastroenterol. 2015;28:383–388

    Google Scholar 

  97. Meucci MC, Hoogerduijn Strating MM, Butcher SC, van Rijswijk CSP, Van Hoek B, Delgado V, et al. Left atrial dysfunction is an independent predictor of mortality in patients with cirrhosis treated by transjugular intrahepatic portosystemic shunt. Hepatol Commun. 2022;6:3163–3174

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Rabie RN, Cazzaniga M, Salerno F, Wong F. The use of E/A ratio as a predictor of outcome in cirrhotic patients treated with transjugular intrahepatic portosystemic shunt. Am J Gastroenterol. 2009;104:2458–2466

    PubMed  Google Scholar 

  99. Møller S, Lee SS. Cirrhotic cardiomyopathy. J Hepatol. 2018;69:958–960

    PubMed  Google Scholar 

  100. Bernardi M, Maggioli C, Dibra V, Zaccherini G. QT interval prolongation in liver cirrhosis: innocent bystander or serious threat? Expert Rev Gastroenterol Hepatol. 2012;6:57–66

    PubMed  Google Scholar 

  101. Koshy AN, Gow PJ, Testro A, Teh AW, Ko J, Lim HS, et al. Relationship between QT-interval prolongation and structural abnormalities in cirrhotic cardiomyopathy: a change in the current paradigm. Am J Transplant. 2021;21:2240–2245

    PubMed  PubMed Central  Google Scholar 

  102. Ytting H, Henriksen JH, Fuglsang S, Bendtsen F, Møller S. Prolonged Q-T(c) interval in mild portal hypertensive cirrhosis. J Hepatol. 2005;43:637–644

    PubMed  Google Scholar 

  103. Henriksen JH, Gulberg V, Fuglsang S, Schifter S, Bendtsen F, Gerbes AL, et al. Q-T interval (QT(C)) in patients with cirrhosis: relation to vasoactive peptides and heart rate. Scand J Clin Lab Invest. 2007;67:643–653

    CAS  PubMed  Google Scholar 

  104. Huang WA, Dunipace EA, Sorg JM, Vaseghi M. Liver disease as a predictor of new-onset atrial fibrillation. J Am Heart Assoc. 2018;7: e008703

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Lee W, Vandenberk B, Raj SR, Lee SS. Prolonged QT interval in cirrhosis: twisting time? Gut Liver. 2022;16:849–860

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Rudzinski W, Waller AH, Prasad A, Sood S, Gerula C, Samanta A, et al. New index for assessing the chronotropic response in patients with end-stage liver disease who are undergoing dobutamine stress echocardiography. Liver Transpl. 2012;18:355–360

    PubMed  Google Scholar 

  107. Umphrey LG, Hurst RT, Eleid MF, Lee KS, Reuss CS, Hentz JG, et al. Preoperative dobutamine stress echocardiographic findings and subsequent short-term adverse cardiac events after orthotopic liver transplantation. Liver Transpl. 2008;14:886–892

    PubMed  Google Scholar 

  108. Zavecz JH, Bueno O, Maloney RE, ODonnell JM, Roerig SC, Battarbee HD. Cardiac excitation-contraction coupling in the portal hypertensive rat. Amer J Physiol Gastrointest L. 2000;279:G28–G39

    CAS  Google Scholar 

  109. Henriksen JH, Fuglsang S, Bendtsen F, Christensen E, Møller S. Dyssynchronous electrical and mechanical systole in patients with cirrhosis. J Hepatol. 2002;36:513–520

    PubMed  Google Scholar 

  110. Scalzo N, Canastar M, Lebovics E. Part 1: disease of the heart and liver: a relationship that cuts both ways. Cardiol Rev. 2022;30:111–122

    PubMed  Google Scholar 

  111. Møller S, Iversen JS, Henriksen JH, Bendtsen F. Reduced baroreflex sensitivity in alcoholic cirrhosis:relations to hemodynamics and humoral systems. Am J Physiol Heart Circ Physiol. 2007;292:H2966–H2972

    PubMed  Google Scholar 

  112. Møller S, Iversen JS, Krag A, Bendtsen F. Relation between baroreflex sensitivity and pulmonary dysfunction in cirrhosis: Effect of hyperoxia. J Hepatol. 2009;50:S84

    Google Scholar 

  113. Mani AR, Montagnese S, Jackson CD, Jenkins CW, Head IM, Stephens RC, et al. Decreased heart rate variability in patients with cirrhosis relates to the presence and severity of hepatic encephalopathy. Am J Physiol Gastrointest Liver Physiol. 2008;296:G330–G338

    PubMed  PubMed Central  Google Scholar 

  114. Genovesi S, Prata Pizzala DM, Pozzi M, Ratti L, Milanese M, Vincenti A, et al. Baroreceptor sensitivity and baroreceptor effectiveness index in cirrhosis: the relevance of hepatic venous pressure gradient. Liver Int. 2009;30:232–239

    PubMed  Google Scholar 

  115. Møller S, Mortensen C, Bendtsen F, Jensen LT, Gotze JP, Madsen JL. Cardiac sympathetic imaging with mIBG in cirrhosis and portal hypertension: relation to autonomic and cardiac function. Am J Physiol Gastrointest Liver Physiol. 2012;303:G1228–G1235

    PubMed  Google Scholar 

  116. Jansen C, Chatterjee DA, Thomsen KL, Al-Kassou B, Sawhney R, Jones H, et al. Significant reduction in heart rate variability is a feature of acute decompensation of cirrhosis and predicts 90-day mortality. Aliment Pharmacol Ther. 2019;50:568–579

    CAS  PubMed  Google Scholar 

  117. Pozzi M, Grassi G, Ratti L, Favini G, Dell’Oro R, Redaelli E, et al. Cardiac, neuroadrenergic, and portal hemodynamic effects of prolonged aldosterone blockade in postviral child a cirrhosis. Am J Gastroenterol. 2005;100:1110–1116

    CAS  PubMed  Google Scholar 

  118. Daneshvar D, Wei J, Tolstrup K, Thomson LE, Shufelt C, Merz CN. Diastolic dysfunction: improved understanding using emerging imaging techniques. Am Heart J. 2010;160:394–404

    PubMed  Google Scholar 

  119. Lawton JS, Cupps BP, Knutsen AK, Ma N, Brady BD, Reynolds LM, et al. Magnetic resonance imaging detects significant sex differences in human myocardial strain. Biomed Eng Online. 2011;10:76

    PubMed  PubMed Central  Google Scholar 

  120. Krag A, Bendtsen F, Kjaer A, Leth-Petersen C, Møller S. Cardiac function studied by dobutamin stress MRI in patients with mild cirrhosis. J Hepatol. 2009;50:S277

    Google Scholar 

  121. Lossnitzer D, Steen H, Zahn A, Lehrke S, Weiss C, Weiss KH, et al. Myocardial late gadolinium enhancement cardiovascular magnetic resonance in patients with cirrhosis. J Cardiovasc Magn Reson. 2010;12:47

    PubMed  PubMed Central  Google Scholar 

  122. Goff DC Jr, Lloyd-Jones DM, Bennett G, Coady S, D’Agostino RB, Gibbons R, et al. 2013 ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation. 2014;129:S49–S73

    PubMed  Google Scholar 

  123. McAvoy NC, Kochar N, McKillop G, Newby DE, Hayes PC. Prevalence of coronary artery calcification in patients undergoing assessment for orthotopic liver transplantation. Liver Transpl. 2008;14:1725–1731

    PubMed  Google Scholar 

  124. Kazankov K, Munk K, Ovrehus KA, Jensen JM, Siggaard CB, Gronbaek H, et al. High burden of coronary atherosclerosis in patients with cirrhosis. Eur J Clin Invest. 2017;47:565–573

    PubMed  Google Scholar 

  125. Patel SS, Lin FP, Rodriguez VA, Bhati C, John BV, Pence T, et al. The relationship between coronary artery disease and cardiovascular events early after liver transplantation. Liver Int. 2019;10:1363–1371

    Google Scholar 

  126. Danielsen KV, Wiese S, Hove J, Bendtsen F, Møller S. Pronounced coronary arteriosclerosis in cirrhosis: Influence on cardiac function and survival? Dig Dis Sci. 2018;63:1355–1362

    PubMed  Google Scholar 

  127. Bateman TM, Heller GV, Beanlands R, Calnon DA, Case J, deKemp R, et al. Practical guide for interpreting and reporting cardiac PET measurements of myocardial blood flow: an Information Statement from the American Society of Nuclear Cardiology, and the Society of Nuclear Medicine and Molecular Imaging. J Nucl Cardiol. 2021;28:768–787

    PubMed  Google Scholar 

  128. Keller H, Bezjak V, Stegaru B, Buss J, Holm E, Heene DL. Ventricular function in cirrhosis and portasystemic shunt: a two-dimensional echocardiographic study. Hepatology. 1988;8:658–662

    CAS  PubMed  Google Scholar 

  129. Cesari M, Frigo AC, Piano S, Angeli P. Prevalence and prognostic value of cirrhotic cardiomyopathy as defined according to the proposed new classification. Clin Exp Hepatol. 2021;7:270–277

    PubMed  PubMed Central  Google Scholar 

  130. Møller S, Hove JD. Cirrhotic cardiomyopathy: Toward an optimized definition. Liver Transpl. 2022;28:1283–1284

    PubMed  Google Scholar 

  131. Chalasani N, Younossi Z, Lavine JE, Charlton M, Cusi K, Rinella M, et al. The diagnosis and management of nonalcoholic fatty liver disease: practice guidance from the American Association for the Study of Liver Diseases. Hepatology. 2018;67:328–357

    PubMed  Google Scholar 

  132. Brunt EM, Kleiner DE, Carpenter DH, Rinella M, Harrison SA, Loomba R, et al. NAFLD: reporting histologic findings in clinical practice. Hepatology. 2021;73:2028–2038

    PubMed  Google Scholar 

  133. Rinella ME, Tacke F, Sanyal AJ, Anstee QM. Report on the AASLD/EASL joint workshop on clinical trial endpoints in NAFLD. J Hepatol. 2019;71:823–833

    PubMed  Google Scholar 

  134. Nababan SHH, Lesmana CRA. Portal hypertension in nonalcoholic fatty liver disease: from pathogenesis to clinical practice. J Clin Transl Hepatol. 2022;10:979–985

    PubMed  PubMed Central  Google Scholar 

  135. Byrne CD, Targher G. Non-alcoholic fatty liver disease-related risk of cardiovascular disease and other cardiac complications. Diabetes Obes Metab. 2022;24(Suppl 2):28–43

    PubMed  Google Scholar 

  136. Duell PB, Welty FK, Miller M, Chait A, Hammond G, Ahmad Z, et al. Nonalcoholic fatty liver disease and cardiovascular risk: a scientific statement from the American Heart Association. Arterioscler Thromb Vasc Biol. 2022;42:e168–e185

    CAS  PubMed  Google Scholar 

  137. Shang Y, Nasr P, Widman L, Hagström H. Risk of cardiovascular disease and loss in life expectancy in NAFLD. Hepatology. 2022;76:1495–1505

    CAS  PubMed  Google Scholar 

  138. Targher G, Byrne CD, Lonardo A, Zoppini G, Barbui C. Non-alcoholic fatty liver disease and risk of incident cardiovascular disease: a meta-analysis. J Hepatol. 2016;65:589–600

    PubMed  Google Scholar 

  139. Zhou YY, Zhou XD, Wu SJ, Fan DH, Van Poucke S, Chen YP, et al. Nonalcoholic fatty liver disease contributes to subclinical atherosclerosis: a systematic review and meta-analysis. Hepatol Commun. 2018;2:376–392

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Vanwagner LB. New insights into NAFLD and subclinical coronary atherosclerosis. J Hepatol. 2018;68:890–892

    PubMed  PubMed Central  Google Scholar 

  141. Targher G, Bertolini L, Padovani R, Rodella S, Zoppini G, Pichiri I, et al. Prevalence of non-alcoholic fatty liver disease and its association with cardiovascular disease in patients with type 1 diabetes. J Hepatol. 2010;53:713–718

    CAS  PubMed  Google Scholar 

  142. Byrne CD, Targher G. Non-alcoholic fatty liver disease-related risk of cardiovascular disease and other cardiac complications. Diabetes Obes Metab. 2021;24:28–43

    PubMed  Google Scholar 

  143. Vanwagner LB, Wilcox JE, Colangelo LA, Lloyd-Jones DM, Carr JJ, Lima JA, et al. Association of nonalcoholic fatty liver disease with subclinical myocardial remodeling and dysfunction: a population-based study. Hepatology. 2015;10:773–783

    Google Scholar 

  144. Chang Y, Ryu S, Sung KC, Cho YK, Sung E, Kim HN, et al. Alcoholic and non-alcoholic fatty liver disease and associations with coronary artery calcification: evidence from the Kangbuk Samsung Health Study. Gut. 2019;68:1667–1675

    CAS  PubMed  Google Scholar 

  145. Lautamaki R, Borra R, Iozzo P, Komu M, Lehtimaki T, Salmi M, et al. Liver steatosis coexists with myocardial insulin resistance and coronary dysfunction in patients with type 2 diabetes. Am J Physiol Endocrinol Metab. 2006;291:E282–E290

    CAS  PubMed  Google Scholar 

  146. Yilmaz Y, Kurt R, Yonal O, Polat N, Celikel CA, Gurdal A, et al. Coronary flow reserve is impaired in patients with nonalcoholic fatty liver disease: association with liver fibrosis. Atherosclerosis. 2010;211:182–186

    CAS  PubMed  Google Scholar 

  147. Soderberg C, Stal P, Askling J, Glaumann H, Lindberg G, Marmur J, et al. Decreased survival of subjects with elevated liver function tests during a 28-year follow-up. Hepatology. 2010;51:595–602

    PubMed  Google Scholar 

  148. Ekstedt M, Hagstrom H, Nasr P, Fredrikson M, Stal P, Kechagias S, et al. Fibrosis stage is the strongest predictor for disease-specific mortality in NAFLD after up to 33 years of follow-up. Hepatology. 2015;61:1547–1554

    CAS  PubMed  Google Scholar 

  149. Baratta F, Pastori D, Angelico F, Balla A, Paganini AM, Cocomello N, et al. Nonalcoholic fatty liver disease and fibrosis associated with Increased risk of cardiovascular events in a prospective study. Clin Gastroenterol Hepatol. 2019;18:2324–233110

    PubMed  Google Scholar 

  150. Granér M, Nyman K, Siren R, Pentikäinen MO, Lundbom J, Hakkarainen A, Lauerma K, et al. Ectopic fat depots and left ventricular function in nondiabetic men with nonalcoholic fatty liver disease. Circ Cardiovasc Imag 2014;8(1):e001979

    Google Scholar 

  151. Petta S, Argano C, Colomba D, Camma C, Di MV, Cabibi D, et al. Epicardial fat, cardiac geometry and cardiac function in patients with non-alcoholic fatty liver disease: association with the severity of liver disease. J Hepatol. 2015;62:928–933

    PubMed  Google Scholar 

  152. Zhou J, Bai L, Zhang XJ, Li H, Cai J. Nonalcoholic fatty liver disease and cardiac remodeling risk: pathophysiological mechanisms and clinical implications. Hepatology. 2021;74:2839–2847

    PubMed  Google Scholar 

  153. Simon TG, Bamira DG, Chung RT, Weiner RB, Corey KE. Nonalcoholic steatohepatitis is associated with cardiac remodeling and dysfunction. Obesity (Silver Spring). 2017;25:1313–1316

    PubMed  Google Scholar 

  154. Wijarnpreecha K, Lou S, Panjawatanan P, Cheungpasitporn W, Pungpapong S, Lukens FJ, et al. Association between diastolic cardiac dysfunction and nonalcoholic fatty liver disease: a systematic review and meta-analysis. Dig Liver Dis. 2018;50:1166–1175

    PubMed  Google Scholar 

  155. Chung GE, Lee JH, Lee H, Kim MK, Yim JY, Choi SY, et al. Nonalcoholic fatty liver disease and advanced fibrosis are associated with left ventricular diastolic dysfunction. Atherosclerosis. 2018;272:137–144

    CAS  PubMed  Google Scholar 

  156. Lee YH, Kim KJ, Yoo ME, Kim G, Yoon HJ, Jo K, et al. Association of non-alcoholic steatohepatitis with subclinical myocardial dysfunction in non-cirrhotic patients. J Hepatol. 2018;68:764–772

    PubMed  Google Scholar 

  157. Mantovani A, Dauriz M, Sandri D, Bonapace S, Zoppini G, Tilg H, et al. Association between non-alcoholic fatty liver disease and risk of atrial fibrillation in adult individuals: An updated meta-analysis. Liver Int. 2019;39:758–769

    PubMed  Google Scholar 

  158. Cai X, Zheng S, Liu Y, Zhang Y, Lu J, Huang Y. Nonalcoholic fatty liver disease is associated with increased risk of atrial fibrillation. Liver Int. 2020;10:1594–1600

    Google Scholar 

  159. Mahfouz RA, Gouda M, Galal I, Ghareb MS. Interatrial septal fat thickness and left atrial stiffness are mechanistic links between nonalcoholic fatty liver disease and incident atrial fibrillation. Echocardiography. 2019;36:249–256

    PubMed  Google Scholar 

  160. Mantovani A, Rigolon R, Pichiri I, Bonapace S, Morani G, Zoppini G, et al. Nonalcoholic fatty liver disease is associated with an increased risk of heart block in hospitalized patients with type 2 diabetes mellitus. PLoS ONE. 2017;12: e0185459

    PubMed  PubMed Central  Google Scholar 

  161. Ballestri S, Lonardo A, Bonapace S, Byrne CD, Loria P, Targher G. Risk of cardiovascular, cardiac and arrhythmic complications in patients with non-alcoholic fatty liver disease. World J Gastroenterol. 2014;20:1724–1745

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Targher G, Valbusa F, Bonapace S, Bertolini L, Zenari L, Pichiri I, et al. Association of nonalcoholic fatty liver disease with QTc interval in patients with type 2 diabetes. Nutr Metab Cardiovasc Dis. 2014;24:663–669

    PubMed  Google Scholar 

  163. Hung CS, Tseng PH, Tu CH, Chen CC, Liao WC, Lee YC, et al. Nonalcoholic fatty liver disease is associated with QT prolongation in the general poopulation. J Am Heart Assoc. 2015;4: e001820

    PubMed  PubMed Central  Google Scholar 

  164. Mantovani A, Rigamonti A, Bonapace S, Bolzan B, Pernigo M, Morani G, et al. Nonalcoholic fatty liver disease Is associated with ventricular arrhythmias in patients with type 2 diabetes referred for clinically indicated 24-hour holter monitoring. Diabetes Care. 2016;39:1416–1423

    CAS  PubMed  Google Scholar 

  165. Wijarnpreecha K, Panjawatanan P, Kroner PT, Cheungpasitporn W, Ungprasert P. Association between cardiac conduction defect and nonalcoholic fatty liver disease: a systematic review and meta-analysis. Ann Gastroenterol. 2020;33:661–666

    PubMed  PubMed Central  Google Scholar 

  166. Przybyszewski EM, Targher G, Roden M, Corey KE. Nonalcoholic fatty liver disease and cardiovascular disease. Clin Liver Dis (Hoboken). 2021;17:19–22

    PubMed  Google Scholar 

  167. Mantovani A, Csermely A, Petracca G, Beatrice G, Corey KE, Simon TG, et al. Non-alcoholic fatty liver disease and risk of fatal and non-fatal cardiovascular events: an updated systematic review and meta-analysis. Lancet Gastroenterol Hepatol. 2021;6:903–913

    PubMed  Google Scholar 

  168. Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology. 2016;64:73–84

    PubMed  Google Scholar 

  169. Mahfood HT, Hamdeh S, Kanmanthareddy A, Alla VM. Nonalcoholic fatty liver disease and the risk of clinical cardiovascular events: a systematic review and meta-analysis. Diabetes Metab Syndr. 2017;11:S209–S216

    Google Scholar 

  170. Tana C, Ballestri S, Ricci F, Di VA, Ticinesi A, Gallina S, et al. Cardiovascular risk in non-Alcoholic fatty liver disease: mechanisms and therapeutic implications. Int J Environ Res Public Health. 2019;16:3104

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Vilar-Gomez E, Calzadilla-Bertot L, Wai-Sun WV, Castellanos M, Aller-de la Fuente R, Metwally M, et al. Fibrosis severity as a determinant of cause-specific mortality in patients with advanced nonalcoholic fatty liver disease: a multi-national cohort study. Gastroenterology. 2018;155:443–457

    PubMed  Google Scholar 

  172. Henson JB, Simon TG, Kaplan A, Osganian S, Masia R, Corey KE. Advanced fibrosis is associated with incident cardiovascular disease in patients with non-alcoholic fatty liver disease. Aliment Pharmacol Ther. 2020;51:728–736

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Mandell MS, Lindenfeld J, Tsou MY, Zimmerman M. Cardiac evaluation of liver transplant candidates. World J Gastroenterol. 2008;14:3445–3451

    PubMed  PubMed Central  Google Scholar 

  174. Khan RS, Newsome PN. Non-alcoholic fatty liver disease and liver transplantation. Metabolism. 2016;65:1208–1223

    CAS  PubMed  Google Scholar 

  175. Tiukinhoy-Laing SD, Rossi JS, Bayram M, De Luca L, Gafoor S, Blei A, et al. Cardiac hemodynamic and coronary angiographic characteristics of patients being evaluated for liver transplantation. Am J Cardiol. 2006;98:178–181

    PubMed  Google Scholar 

  176. Vanwagner LB, Bhave M, Te HS, Feinglass J, Alvarez L, Rinella ME. Patients transplanted for nonalcoholic steatohepatitis (NASH) are at increased risk for post-operative cardiovascular events. Hepatology. 2012;56:1741–1750

    PubMed  Google Scholar 

  177. Izzy M, Fortune BE, Serper M, Bhave N, deLemos A, Gallegos-Orozco JF, et al. Management of cardiac diseases in liver transplant recipients: comprehensive review and multidisciplinary practice-based recommendations. Am J Transplant. 2022;22:2740–2758

    PubMed  Google Scholar 

  178. Angeli P, Bernardi M, Villanueva C, Francoz C, Mookerjee RP, Trebicka J, et al. EASL Clinical Practice Guidelines for the management of patients with decompensated cirrhosis. J Hepatol. 2018;69:406–460

    Google Scholar 

  179. Ripoll C, Yotti R, Bermejo J, Banares R. The heart in liver transplantation. J Hepatol. 2010;54:810–822

    PubMed  Google Scholar 

  180. Harinstein ME, Iyer S, Mathier MA, Flaherty JD, Fontes P, Planinsic RM, et al. Role of baseline echocardiography in the preoperative management of liver transplant candidates. Am J Cardiol. 2012;110:1852–1855

    PubMed  Google Scholar 

  181. Rotman Y, Sanyal AJ. Current and upcoming pharmacotherapy for non-alcoholic fatty liver disease. Gut. 2017;66:180–190

    CAS  PubMed  Google Scholar 

  182. Adams LA, Anstee QM, Tilg H, Targher G. Non-alcoholic fatty liver disease and its relationship with cardiovascular disease and other extrahepatic diseases. Gut. 2017;66:1138–1153

    PubMed  Google Scholar 

  183. Piepoli MF, Hoes AW, Agewall S, Albus C, Brotons C, Catapano AL, et al. 2016 European Guidelines on cardiovascular disease prevention in clinical practice: The Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited experts): Developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). Eur J Prev Cardiol. 2016;23:NP1–NP96

    PubMed  Google Scholar 

  184. Lloyd-Jones DM, Braun LT, Ndumele CE, Smith SC Jr, Sperling LS, Virani SS, et al. Use of risk assessment Ttols to “a Guide” decision-making in the primary prevention of atherosclerotic cardiovascular disease: a special report from the american heart association and american college of cardiology. J Am Coll Cardiol. 2019;73:3153–3167

    PubMed  Google Scholar 

  185. Kim H, Lee CJ, Ahn SH, Lee KS, Lee BK, Baik SJ, et al. MAFLD predicts the risk of cardiovascular disease better than NAFLD in asymptomatic subjects with health check-ups. Dig Dis Sci. 2022;67:4919–4928

    CAS  PubMed  Google Scholar 

  186. Chahal D, Liu H, Shamatutu C, Sidhu H, Lee SS, Marquez V. Review article: comprehensive analysis of cirrhotic cardiomyopathy. Aliment Pharmacol Ther. 2021;53:985–998

    PubMed  Google Scholar 

  187. Izzy M, DuBrock HM. CAQ Corner: Cardiovascular and pulmonary evaluation of liver transplantation candidates: what you need to know for the board exam. Liver Transpl. 2022;28:1529–1538

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Søren Møller.

Ethics declarations

Funding

The authors have not disclosed any funding.

Competing interests

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Møller, S., Wiese, S., Barløse, M. et al. How non-alcoholic fatty liver disease and cirrhosis affect the heart. Hepatol Int 17, 1333–1349 (2023). https://doi.org/10.1007/s12072-023-10590-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12072-023-10590-1

Keywords

Navigation