Skip to main content

Advertisement

Log in

Assessment of the features of serum apolipoprotein profiles in chronic HCV infection: difference between HCV genotypes 1b and 2

  • Original Article
  • Published:
Hepatology International Aims and scope Submit manuscript

Abstract

Background

The life cycle of hepatitis C virus (HCV) is tightly associated with host lipoprotein metabolic pathways. Apolipoprotein is present on the outer surface of lipoprotein particles and plays an important role in lipoprotein metabolism. We aimed to elucidate the influence of chronic HCV infection on serum apolipoprotein profiles.

Methods

Fasting serum apolipoprotein profiles of 310 subjects with active or cleared HCV infection were examined. Subsequently, the association between chronic HCV infection and serum apolipoprotein levels was determined using multiple regression analysis.

Results

Active HCV infection was associated with high serum levels of apo A-II and low serum levels of apo C-II and C-III. HCV infection with both genotype 1b (G1b) and genotype 2 (G2) was associated with low serum levels of either apo C-II and C-III, whereas only HCV G1b infections caused elevated levels of apo A II and E. Among active HCV infections, HCV G1b was associated with an elevation in the serum apo E levels. Furthermore, IL28B non-major genotype (rs8099917 TG/GG) was associated with low levels of serum apo B and high levels of apoA-II, and advanced fibrosis was associated with low levels of apo B and C-II in G1b infection.

Conclusions

Active HCV infection is distinctively associated with characteristic serum apolipoprotein profiles. The influence on apolipoprotein profiles varies with different HCV genotypes. Moreover, the genotype of IL28B and hepatic fibrosis affected serum apolipoproteins in G1b infection. Abnormalities in serum apolipoproteins may provide a clue to the elucidation of complex interactions between active HCV infection and lipid metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. World Health Organization. World Health Organization. Media Centre. July 2013. http://www.who.int/mediacentre/factsheets/fs164/en/

  2. Murray R, Bender D. Botham KM, Kennelly PJ, Rodwell V, Weil PA. Harper’s Illustrated Biochemistry. 29th ed. US: McGraw-Hill Medical; 2012

  3. Nielsen SU, Bassendine MF, Burt AD, Martin C, Pumeechockchai W, Toms GL. Association between hepatitis C virus and very-low-density lipoprotein (VLDL)/LDL analyzed in iodixanol density gradients. J Virol 2006;80:2418–2428

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Jiang J, Wu X, Tang H, Luo G. Apolipoprotein E mediates attachment of clinical hepatitis C virus to hepatocytes by binding to cell surface heparan sulfate proteoglycan receptors. PLoS One 2013;8(7):e67982

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Fartoux L, Poujol-Robert A, Guéchot J, Wendum D, Poupon R, Serfaty L. Insulin resistance is a cause of steatosis and fibrosis progression in chronic hepatitis C. Gut 2005;54:1003–1008

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Yamane D, McGivern DR, Masaki T, Lemon SM. Liver injury and disease pathogenesis in chronic hepatitis C. Curr Top Microbiol Immunol 2013;69:263–288

    Google Scholar 

  7. Rojas ÁJA, del Campo JA, Maraver M, Aparcero R, García-Valdecasas M, Diago M, et al. Hepatitis C virus infection alters lipid metabolism depending on IL28B polymorphism and viral genotype and modulates gene expression in vivo and in vitro. J Viral Hepat 2014;21:19–24

    Article  PubMed  CAS  Google Scholar 

  8. Pawlotsky JM, Tsakiris L, Roudot-Thoraval F, Pellet C, Stuyver L, Duval J, et al. Relationship between hepatitis C virus genotypes and sources of infection in patients with chronic hepatitis C. J Infect Dis 1995;171:1607–1610

    Article  PubMed  CAS  Google Scholar 

  9. Rowell J, Thompson AJ, Guyton JR, Lao XQ, McHutchison JG, McCarthy JJ, et al. Serum apolipoprotein C-III is independently associated with chronic hepatitis C infection and advanced fibrosis. Hepatol Int 2012;6:475–481

    Article  Google Scholar 

  10. Moriya K, Shintani Y, Fujie H, Miyoshi H, Tsutsumi T, Yotsuyanagi H, et al. Serum lipid profile of patients with genotype 1b hepatitis C viral infection in Japan. Hepatol Res 2003;25:371–376

    Article  PubMed  CAS  Google Scholar 

  11. Serfaty L, Andreani T, Giral P, Carbonell N, Chazouillères O, Poupon R. Hepatitis C virus induced hypobetalipoproteinemia: a possible mechanism for steatosis in chronic hepatitis C. J Hepatol 2001;34:428–434

    Article  PubMed  CAS  Google Scholar 

  12. Bridge SH, Sheridan DA, Felmlee DJ, Nielsen SU, Thomas HC, Taylor-Robinson SD, et al. Insulin resistance and low-density apolipoprotein B-associated lipoviral particles in hepatitis C virus genotype 1 infection. Gut 2011;60:680–687

    Article  PubMed  CAS  Google Scholar 

  13. Perlemuter G, Sabile A, Letteron P, Vona G, Topilco A, Chrétien Y, et al. Hepatitis C virus core protein inhibits microsomal triglyceride transfer protein activity and very low density lipoprotein secretion: a model of viral-related steatosis. FASEB J 2002;16:185–194

    Article  PubMed  CAS  Google Scholar 

  14. Chayama K, Tsubota A, Arase Y, et al. Genotypic subtyping of hepatitis C virus. J Gastroenterol Hepatol 1993;8:150–156

    Article  PubMed  CAS  Google Scholar 

  15. Fujie H, Yotsuyanagi H, Moriya K, Shintani Y, Tsutsumi T, Takayama T, et al. Steatosis and intrahepatic hepatitis C virus in chronic hepatitis. J Med Virol 1999;59:141–145

    Article  PubMed  CAS  Google Scholar 

  16. Miyajima I, Kawaguchi T, Fukami A, Nagao Y, Adachi H, Sasaki S, et al. Chronic HCV infection was associated with severe insulin resistance and mild atherosclerosis: a population-based study in an HCV hyperendemic area. J Gastroenterol 2013;48:93–100

    Article  PubMed  Google Scholar 

  17. Sato S, Genda T, Hirano K, Tsuzura H, Kanemitsu Y, Narita Y, et al. Differences in the factors associated with serum viral load between genotypes 1 and 2 in patients with chronic hepatitis C. Hepatol Int 2013;7:508–515

    Article  Google Scholar 

  18. Bassendine MF, Sheridan DA, Bridge SH, Felmlee DJ, Neely RD. Lipids and HCV. Semin Immunopathol 2013;35:87–100

    Article  PubMed  CAS  Google Scholar 

  19. Simmonds P, Mellor J, Sakuldamrongpanich T, Nuchaprayoon C, Tanprasert S, Holmes EC, et al. Evolutionary analysis of variants of hepatitis C virus found in South-East Asia: comparison with classifications based upon sequence similarity. J Gen Virol 1996;77:3013–3024

    Article  PubMed  Google Scholar 

  20. Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 1972;18:499–502

    PubMed  CAS  Google Scholar 

  21. Sterling RK, Lissen E, Clumeck N, Sola R, Correa MC, Montaner J, et al. Development of a simple noninvasive index to predict significant fibrosis in patients with HIV/HCV coinfection. Hepatology 2006;43:1317–1325

    Article  PubMed  CAS  Google Scholar 

  22. Vallet-Pichard A, Mallet V, Nalpas B, Verkarre V, Nalpas A, Dhalluin-Venier V, et al. FIB-4: an inexpensive and accurate marker of fibrosis in HCV infection. comparison with liver biopsy and fibrotest. Hepatology 2007;46:32–36

    Article  PubMed  CAS  Google Scholar 

  23. Syvänne M, Kahri J, Virtanen KS, Taskinen MR. HDLs containing apolipoproteins A-I and A-II (LpA-I:A-II) as markers of coronary artery disease in men with non-insulin-dependent diabetes mellitus. Circulation 1995;92:364–370

    Article  PubMed  Google Scholar 

  24. Kim K, Kim KH, Ha E, Park JY, Sakamoto N, Cheong J. Hepatitis C virus NS5A protein increases hepatic lipid accumulation via induction of activation and expression of PPARgamma. FEBS Lett 2009;583:2720–2726

    Article  PubMed  CAS  Google Scholar 

  25. Thulin P, Glinghammar B, Skogsberg J, Lundell K, Ehrenborg E. PPARdelta increases expression of the human apolipoprotein A-II gene in human liver cells. Int J Mol Med 2008;21:819–824

    PubMed  CAS  Google Scholar 

  26. Ooi EM, Watts GF, Sprecher DL, Chan DC, Barrett PH. Mechanism of action of a peroxisome proliferator-activated receptor (PPAR)-delta agonist on lipoprotein metabolism in dyslipidemic subjects with central obesity. J Clin Endocrinol Metab 2011;96:E1568–E1576

    Article  PubMed  CAS  Google Scholar 

  27. Hertz R, Bishara-Shieban J, Bar-Tana J. Mode of action of peroxisome proliferators as hypolipidemic drugs. Suppression of apolipoprotein C-III. J Biol Chem 1995;270:13470–13475

    Article  PubMed  CAS  Google Scholar 

  28. Hueging K, Doepke M, Vieyres G, Bankwitz D, Frentzen A, Doerrbecker J, et al. Apolipoprotein E codetermines tissue tropism of hepatitis C virus and is crucial for viral cell-to-cell transmission by contributing to a postenvelopment step of assembly. J Virol 2014;88:1433–1446

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Sheridan DA, Bridge SH, Felmlee DJ, Crossey MM, Thomas HC, Taylor-Robinson SD, et al. Apolipoprotein-E and hepatitis C lipoviral particles in genotype 1 infection: evidence for an association with interferon sensitivity. J Hepatol 2012;57:32–38

    Article  PubMed  CAS  Google Scholar 

  30. Yoshizawa K, Abe H, Aida Y, Ishiguro H, Ika M, Shimada N, et al. Serum apolipoprotein B-100 concentration predicts the virological response to pegylated interferon plus ribavirin combination therapy in patients infected with chronic hepatitis C virus genotype 1b. J Med Virol 2013;85:1180–1190

    Article  PubMed  CAS  Google Scholar 

  31. Aizawa Y, Yoshizawa K, Aida Y, Ishiguro H, Abe H, Tsubota A. Genotype rs8099917 near the IL28B gene and amino acid substitution at position 70 in the core region of the hepatitis C virus are determinants of serum apolipoprotein B-100 concentration in chronic hepatitis C. Mol Cell Biochem 2012;360:9–14

    Article  PubMed  CAS  Google Scholar 

Download references

Compliance with ethical requirements and Conflict of interest

The study protocol complied with the standards of the 1975 Declaration of Helsinki and was approved by the Review Board of Jikei University School of Medicine. Prior written informed consent was obtained from all patients. Yoshio Aizawa received grants from Merck Sharp & Dohme (MSD), Tokyo, Japan, and Tanabe Mitsubishi Pharma, Osaka, Japan. The authors declare that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobuyoshi Seki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seki, N., Sugita, T., Aida, Y. et al. Assessment of the features of serum apolipoprotein profiles in chronic HCV infection: difference between HCV genotypes 1b and 2. Hepatol Int 8, 550–559 (2014). https://doi.org/10.1007/s12072-014-9572-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12072-014-9572-2

Keywords

Navigation